Abstract
Myeloperoxidase, H2O2, and a halide constitute a potent antimicrobial system. A cytotoxic effect of this system on a line of mouse ascitic lymphoma cells (LSTRA) is demonstrated here using four different assay systems: 51Cr release, trypan blue exclusion, inhibition of glucose C-1 oxidation, and loss of oncogenicity for mice. Deletion of each component of the system, preheating the peroxidase, or addition of azide, cyanide, or catalase abolished the cytotoxicity. Myeloperoxidase was effective with either chloride or iodide as the halide, while lastoperoxidase was effective with iodide but not chloride. The iodinated thyroid hormones, triiodothyronine and thyroxine, could substitute for the halide, and H2O2 could be replaced by a peroxide- generating enzyme system such as glucose and glucose oxidase or by H2O2 producing bacteria such as pneumococci or streptococci. The possibility is raised that the peroxidases of inflammatory cells and certain biologic fluids may affect tumor initiation or growth in vivo.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal