Abstract
The problem of the low activity of so-called methemoglobin reductase in red cells from newborns was reinvestigated in view of our current knowledge of this enzyme, i.e., (1) its being cytochrome-b5 reductase and (2) its presence in two forms: soluble and membrane-bound. We found that red cells from cord blood and newborns exhibited a 50% decrease of soluble cytochrome-b5 reductase activity, whereas membrane-bound activity was in the adult range. Ghosts from these cells possessed diminished ability to solubilize membrane-bound cytochrome-b5 reductase in the course of in vitro auto-incubation. This autosolubilizing ability increased with age and reached adult level concomitantly with soluble cytochrome-b5 reductase activity at 6 mo. We conclude that the relative deficiency of soluble cytochrome-b5 reductase observed at birth is due to diminished post-translational processing of the membrane-bound enzyme during erythropoiesis of fetal cells. This processing is calcium-dependent related to calmodulin.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal