Abstract
Human high molecular weight kininogen (HMWK), a single-chain protein with mol wt 120,000, is cleaved by human urinary kallikrein (HUK) to release kinin from within a disulfide loop and form a two-chain protein that retains all the procoagulant activity of the native molecule. Cleavage of HMWK by HUK is associated with a reduction in size to mol wt 115,000, as assessed by SDS-PAGE of unreduced protein, whereas the two chains of the reduced protein present together as a single broad band with mol wt 64,000. The 64,000 chain with procoagulant activity was chromatographically separated from the nonfunctional chain of similar size. The homogeneous procoagulant chain had an amino acid composition similar to that of smaller procoagulant (“light”) chains isolated by others upon cleavage of HMWK with plasma kallikrein and elicited an antiserum that was monospecific by Ouchterlony analysis and inhibited the procoagulant function of HMWK. Thus, the limited proteolysis of HMWK by HUK has permitted, for the first time, the isolation of a stable procoagulant chain that is equal in size to the nonfunctional chain. The common terminology of “heavy” and “light” chain for kinin-free kininogen obtained with plasma kallikrein reflects the continued degradation of the procoagulant carboxyterminal chain and is not appropriate for the initial two-chain product formed when kinin is released from HMWK. It is proposed that the initial cleavage products of HMWK be designated the A-chain, the B-fragment, and the C- chain, representing the amino-terminal chain, the released vasoactive peptide containing the bradykinin sequence, and the carboxy-terminal procoagulant chain, respectively. Thus, intact HMWK would contain, in sequence, A, B, and C regions.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal