Abstract
Autologous bone marrow transplants (BMTs) can repopulate the hematologic system of patients treated with marrow-ablative chemotherapy and/or radiotherapy. However, treatment of the bone marrow graft to eliminate residual tumor cells prior to reinfusion can delay the return of peripheral blood elements, presumably from damage to or loss of hematopoietic stem cells responsible for hematologic recovery. To develop a model predictive of hematologic recovery, we studied the progenitor cell contents of 4-hydroperoxycyclophosphamide (100 micrograms/mL)-purged bone marrow grafts of 40 consecutive patients undergoing autologous BMT at this center. Granulocyte-macrophage colonies (CFU-GM) were grown from all grafts after treatment with this chemotherapeutic agent, but erythroid (BFU-E) and mixed (CFU-GEMM) colonies were grown from only 44% and 33% of the grafts respectively. The recovery of CFU-GM after purging ranged from 0.07% to 23%. The logarithm of CFU-GM content of the treated grafts was linearly correlated with the time to recovery of peripheral blood leukocytes (r = -0.80), neutrophils (r = -0.79), reticulocytes (r = -0.60), and platelets (r = -0.66). The CFU-GM content of purged autologous bone marrow grafts may reflect the hematopoietic stem cell content of the grafts and thus predict the rate of hematologic recovery in patients undergoing autologous BMT.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal