Abstract
Although erythropoietin (Epo) is produced primarily by the kidneys in response to hypoxia, the precise cell type(s) and mechanisms by which these cells regulate production are poorly understood. In the experiments we report, the kinetics of renal Epo production in response to acute hypoxia and the intrarenal localization of cellular Epo synthesis were studied at the level of Epo mRNA. Erythropoietin mRNA expression was determined by Northern blot analysis of rat kidney RNAs using a probe derived from the mouse Epo gene. Renal Epo mRNA content increased as early as 1 hour after initiation of hypoxia and continued to accumulate during 4 hours of stimulation. Discontinuation of the hypoxic stimulus resulted in rapid decay of mRNA levels. Kidney and plasma Epo levels measured by radioimmunoassay paralleled, with respective lag times, the changes in renal Epo mRNA content, suggesting that Epo production in response to acute hypoxia represents de novo synthesis and is regulated by changes in Epo mRNA. Northern blot analysis of RNAs extracted from separated glomerular and tubular tissue fractions revealed Epo mRNA in the tubular fraction, whereas glomerular tissue did not contain Epo mRNA. Thus, the site of cellular Epo synthesis is located in the renal tubule or its interstitium and not in the glomerular tuft.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal