Abstract
Human myeloid leukemia cells respond to various signals by differentiating to more mature cells. This study was designed to evaluate the effects of a mononuclear phagocyte-derived factor, tumor necrosis factor/cachectin (TNF), on the proliferation and differentiation of the human cell lines HL-60 (promyelocytic) and U937 (monoblastic), and to characterize TNF receptors on these cells. TNF had no effect on HL-60 cell growth or thymidine incorporation, but it markedly inhibited that of U937 cells. HL-60 cells treated with TNF formed osteoclast-like polykaryons and developed nonspecific esterase positivity. In a dose-dependent fashion, TNF enhanced HL-60 cell nonspecific esterase activity, H2O2 production, NBT reduction, and acid phosphatase content. Together, TNF and interferon-gamma (IFN-gamma) additively and synergistically caused increases in these activities as well as the expression of HLA-DR and the monocyte antigens LeuM3 (CDw14) and OKM1 (CD11). TNF also synergistically enhanced the differentiating effects of 1,25-dihydroxyvitamin D3. The potentiating actions of D3 of IFN-gamma on the TNF effect were maximal when the two agents were present together throughout the incubation, and pretreatment with TNF augmented the subsequent response to D3, but not IFN-gamma. HL-60 and U937 cells bound 125I-labeled TNF specifically, rapidly, and reversibly with binding constants of 227 and 333 pmol/L and receptors per cell of 4,435 and 6,806 for HL-60 and U937, respectively. Scatchard plots were linear, which suggested single classes of receptors. HL-60 TNF receptors were not changed by a three- day treatment with IFN-gamma or D3. U937 and HL-60 cells internalized and degraded 125I-labeled TNF to comparable degrees. TNF has differing effects on HL-60 and U937 cells that are apparently mediated through comparable high-affinity TNF receptors. The unique responses of different cell types to TNF may be due to postreceptor factors.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal