Abstract
The identical cytogenetic marker, t(9;22)(q34;q11) (Philadelphia [Ph] translocation), is found in approximately 90%, 20%, and 2% of adult patients with chronic myelogenous leukemia (CML), acute lymphoblastic leukemia (ALL), and acute myelogenous leukemia (AML), respectively. In CML, the molecular events resulting from the Ph translocation include a break within the bcr locus on chromosome 22, transfer of the c-abl protooncogene from chromosome 9 to 22, and formation of an aberrant 210- kD bcr-abl fusion protein (p210bcr-abl). Recently, the absence of bcr rearrangement and expression of a distinct aberrant 190-kd abl protein (p190c-abl) has been described in Ph-positive ALL, with the suggestion that the two abl variants may be pathogenetically associated with myeloid v lymphoid leukemogenesis. Here we report that the genomic configuration and translation product of Ph-positive AML can be similar to that of Ph-positive ALL: the break at 22q11 may occur outside the 5.8 kb bcr region and result in expression of a 190-kD abl protein lacking these bcr sequences. Phosphokinase enzymatic activity, a fundamental property of p210bcr-abl, was also associated with AML- derived p190c-abl. Our current observations indicate that p190c-abl can be found in cells of lymphoid or myeloid lineage and is therefore unlikely to play a specific role in the development of lymphoid leukemias. Formation of p190c-abl instead of p210bcr-abl appears to be a characteristic of the acute rather than the chronic Ph-positive leukemic state.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal