Abstract
Using several multiple drug-resistant human myeloma cell lines as standards, we developed an immunohistochemical staining technique and means of quantitating P-glycoprotein in individual myeloma cells. The level of staining intensity for P-glycoprotein in individual myeloma cells was quantitated by measuring the average optical density of each cell with a microscopic computerized cell analysis system. Using this system, we observed that the level of P-glycoprotein for individual cells within a cell population of known drug sensitivity was very homogeneous (coefficient of variation less than or equal to 13%). Analysis of cell lines with gradually increasing levels of multidrug resistance (8226/S, 8226/Dox6 and 8226/Dox40) demonstrated a close association between the level of resistance to doxorubicin, defined by the mean lethal dose (D0) and the amount of P-glycoprotein on individual cells determined by the optical density (r = 0.82, P less than 0.0005). Intracellular doxorubicin (DOX) accumulation in the individual cell lines was inversely related to the level of drug resistance expressed as D0. P-glycoprotein was also detected in the marrow-derived myeloma cells of patients with drug refractory disease using immunohistochemical staining. The amount of P-glycoprotein in the cells of one patient was directly compared to the amount found in the simultaneously stained standard cell lines (8226/Dox6 and 8226/Dox40) by comparing the optical densities for individual cells. Using this immunohistochemical technique to detect and quantitate P-glycoprotein in patient myeloma cells and comparing it to standard multidrug resistant myeloma cell lines may be of value in determining the contribution of P-glycoprotein to clinical drug resistance in patients with multiple myeloma.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal