Abstract
The Belgrade laboratory (b/b) rat has a hereditary hypochromic microcytic anemia because of defective transmembrane iron transport into erythroblasts. The present study was prompted by our previous work in which we showed that the b/b rat has hypomegakaryocytic thrombocytopenia associated with increased megakaryocyte size. To define the basic mechanism underlying this abnormality in the b/b rat we have studied both megakaryocytopoiesis and granulopoiesis in anemic b/b rats, chronically transfused b/b rats, iron-treated b/b rats, and controls. We have found decreased concentrations of megakaryocyte and granulocyte progenitors in the marrow of b/b rats. Full correction of the severe anemia by chronic transfusion resulted in normalization of megakaryocyte progenitors, small acetylcholinesterase positive cells, megakaryocyte size, and platelet counts, along with granulocyte progenitors. In contrast, the partial correction of anemia obtained by iron treatment resulted in improvement, but not normalization, of these parameters. These findings indicate that abnormal megakaryocytopoiesis in the b/b rat can be best interpreted as a consequence of hypoxia because of the severe anemia. Because we have recently shown that the number of erythroid progenitors in b/b rats is also low, we propose that abnormal megakaryocytopoiesis in this animal is a reflection of an acquired stem cell disorder induced by the prolonged hypoxia resulting from the severe anemia.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal