Abstract
Cultured bovine aortic endothelial cells (BAEC) released endothelin-1 (ET-1) in the culture medium in a time-dependent fashion. Coincubation of fMLP-activated human polymorphonuclear leukocytes (PMN) with BAEC caused a fast (maximal activity was reached within 15 minutes) and cell number-dependent disappearance of ET-1 from the medium. This effect was direct to ET-1, because it was also present when PMN were incubated with the synthetic peptide in the absence of BAEC. PMN-dependent disappearance of ET-1 was associated with loss of constrictor activity on isolated rabbit aorta. PMN-released products were responsible for ET- 1 degrading activity, because supernatants of activated PMN were equally effective as the intact cells. Resting PMN, in the same time frame, were uneffective. Eglin C, a potent blocker of PMN-derived elastase and cathepsin G, reversed the ET-1 inhibitory activity of fMLP- stimulated PMN and of their supernatant. Direct addition of elastase and cathepsin G to synthetic ET-1 destroyed its immunoreactivity and this effect was blocked by eglin C. High-performance liquid chromatography (HPLC) analysis supported the hypothesis that ET-1 degradation by PMN was due to enzymatic proteolysis. These data provide evidence that activated PMN are able to degrade ET-1 through the release of proteases. Because physiologic concentrations of PMN can destroy high amounts (up to 100 nmol/L) of ET-1 within a few minutes, we propose that this mechanism of ET-1 inactivation has biologic relevance.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal