Abstract
We have examined whether transfected mouse erythroleukaemia (MEL) cells can be used to examine differential expression of human gamma- and beta- globin genes. These cells, which express only their adult globin genes, will transcribe the human adult beta gene but not the fetal gamma genes when they are introduced on an intact human chromosome 11 by cell fusion. However, MEL cells stably transfected with the human A gamma gene attached to one of the active elements (HS2) of the beta-globin locus control region (LCR) readily produce gamma-globin mRNA in amounts equivalent to those seen with a comparable beta gene insert. When both beta and gamma genes are attached to HS2, equal amounts of beta A gamma mRNAs are produced, irrespective of the gene order. Furthermore, when HS2 is inserted into the 5′ end of a 40-kb cosmid containing the G gamma A gamma-117 delta beta genes in their normal chromosomal organization (but with the Greek HPFH -117 A gamma gene mutation), it directs expression of readily detectable amounts of G gamma A gamma and beta-globin mRNAs in MEL cells. Therefore, under these circumstances we have observed no competition between beta and gamma genes for expression in MEL cells. These findings suggest that MEL cells are capable of perpetuating regulatory information involved in developmental control when it is provided by an intact chromosome, but are incapable of reconstructing such information on transfected DNA.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal