Abstract
Plasminogen activators (PAs) and/or plasmin may be involved in hematopoietic regulation. These enzymes release biologically relevant cytokines such as basic fibroblast growth factor (bFGF) from matrix and cell surfaces. In addition, transforming growth factor beta (TGF beta) and interleukin-1 beta (IL-1 beta) are converted from inactive to active forms by plasmin. Therefore, we studied the regulation of PAs and their specific inhibitors, PA inhibitor 1 (PAI-1) and PA inhibitor 2 (PAI-2), in human bone marrow stromal fibroblasts by IL-1 beta, bFGF, and TGF beta. All three cytokines stimulated PA secretion. IL-1 beta at 10(4) U/mL increased urokinase (u-PA) levels approximately 10-fold, bFGF at 0.2 ng/mL also increased production 10-fold, but increased predominantly tissue PA (t-PA) expression. TGF beta at 0.2 ng/mL increased u-PA production up to 300-fold. PAI-1 and PAI-2 are also regulated by these cytokines. IL-1 beta decreased PAI-1 levels by 50% and stimulated PAI-2 levels sixfold. bFGF had minimal effects on PAI-1 and TGF beta increased PAI-1 levels twofold. Neither of these agents had an effect on PAI-2 levels. Thus, three cytokines relevant to bone marrow physiology regulate PA and inhibitor production by human bone marrow stromal fibroblasts. In this manner PA and plasmin generation in specific microenvironments in the bone marrow may be one of the factors orchestrating the complex series of events, which results in an efficient exquisitely regulated hematopoietic process.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal