Abstract
We have characterized a murine IgG monoclonal antibody, OP-G2, specific for platelet glycoprotein (GP) IIb-IIIa (alpha IIb beta 3). OP-G2 Fab fragments inhibit fibrinogen-mediated platelet aggregation and competitively inhibit adenosine diphosphate-induced binding of 125I- fibrinogen to washed platelets. OP-G2 binding to GPIIb-IIIa is specifically inhibited by RGD-containing peptides but not the fibrinogen gamma-chain carboxy-terminal peptide, and OP-G2 Fab fragments, like RGD-containing peptides, alter the conformation of GPIIb-IIIa resulting in the expression of a ligand-induced binding site (LIBS) recognized by PMI-1. OP-G2 fails to bind to the recombinant Cam variant of GPIIb-IIIa (alpha III beta 3Cam) wherein an Asp119 to Tyr119 substitution in GPIIIa abrogates the ability to recognize RGD. These data indicate that OP-G2 recognizes an epitope at or in very close proximity to the RGD recognition site of GPIIb-IIIa and that, in every aspect tested, OP-G2 behaves like a macromolecular RGD ligand. Interestingly, two-color flow cytometry shows that OP-G2 IgG can bind to nonactivated platelets. Quantitative binding assays indicate that nonactivated platelets bind approximately 50,000 125I-OP-G2 molecules/platelet. Furthermore, the affinity of OP-G2 for platelets activated with thrombin is roughly fivefold higher (nonactivated, kd = 24.8 nmol/L; activated, kd = 4.9 nmol/L). These results suggest that the RGD recognition site of GPIIb-IIIa is available to macromolecules that contain RGD even on nonactivated platelets, provided that the affinity of the ligand is adequate.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal