Abstract
Neonatal hematopoiesis and host defense are developmentally immature and under states of increased demand predispose the newborn to peripheral cytopenias and depletion of bone marrow storage pool reserves. We have previously demonstrated that recombinant human granulocyte colony-stimulating factor (rhG-CSF) can significantly modulate neonatal rat granulopoiesis and act synergistically with antibiotic therapy to reduce the mortality rate during experimental group B streptococcal sepsis. Stem cell factor (SCF) has been shown to stimulate early hematopoietic progenitor cells and, in the presence of lineage-specific CSFs, enhance committed progenitor cell proliferation. In the present study we examined the in vivo neonatal hematologic effects of recombinant rat (rr) SCF (14 days), simultaneous rrSCF + rhG- CSF (14 days), and sequential combination of rrSCF (7 days) + rhG-CSF (7 days). Sprague-Dawley newborn rats (less than or equal to 24 hours) were injected intraperitoneal (IP) x 14 days with the above combinations. rrSCF (0 to 200 micrograms/kg/d) had a negligible effect on the peripheral platelet count and absolute neutrophil count (ANC) but the diminution in the hematocrit during the first 10 days of treatment was less pronounced (P = .0001). However, the simultaneous use of rrSCF + rhG-CSF synergistically increased the circulating day 6 to 13 ANC (P = .001). Similarly, sequential rrSCF + rhG-SCF also had a synergistic significant effect during the second week of therapy on the circulating ANC (P = .01). The bone marrow neutrophil storage and proliferative pools were also significantly increased in newborn rats treated with rrSCF + rhG-CSF versus rhG-CSF (P = .02). The bone marrow and liver/spleen CFU-GM pool was unchanged; however, the CFU-GM proliferative rates were significantly increased in the rrSCF + rhG-CSF group (P = .04). rrSCF also induced a significant increase in the bone marrow and liver/spleen mast cell pool (P = .002). Lastly, rrSCF x 14 days +/- rhG-CSF significantly reduced the mortality rate at 48 and 120 hours after experimental group B streptococcus sepsis (P = .03 and .05, respectively). These data suggest that combination SCF + G-CSF therapy compared with G-CSF alone significantly increases the neonatal rat peripheral neutrophil count, bone marrow myeloid pools and proliferative rates, and induces a reduction in the mortality rate during experimental bacterial sepsis. SCF therapy may have future potential applications in the modulation of human neonatal hematopoiesis and host defense.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal