Abstract
Recombinant granulocyte-macrophage colony-stimulating factor (GM-CSF) following interleukin-3 (IL-3) priming has been shown to increase thrombopoiesis. To elucidate the comparative abilities of IL-3 and GM- CSF in influencing megakaryocyte development in vivo, serial bone marrow analyses were performed on rhesus monkeys treated with 5 micrograms/kg/d of IL-3 and 5 micrograms/kg/d of GM-CSF sequentially for 4 days each, simultaneously for 8 days, and as single agents for 8 days. Platelet counts maximally increased to a mean of 7.5 x 10(5)/microL (n = 3) on days 11 through 12 in monkeys treated with sequential IL-3/GM-CSF. In contrast, neither IL-3 alone nor simultaneously administered IL-3/GM-CSF elicited increases in thrombopoiesis between days 3 and 15. GM-CSF elicited a variable platelet response. Megakaryocyte ploidy distributions were significantly (P < .001) shifted between days 7 and 10 in monkeys treated sequentially and between days 3 and 15 in monkeys treated with combined IL-3/GM-CSF and with GM-CSF alone but not in monkeys treated with IL-3 alone. The changes in mean DNA content and megakaryocyte size, as determined by digital image analysis, were larger in monkeys treated with sequential IL-3/GM-CSF and with GM-CSF alone than in simultaneously treated monkeys. In addition, sequentially but not simultaneously treated monkeys showed increased numbers of megakaryocytes on bone marrow biopsy. We conclude that administration of IL-3 followed by GM-CSF treatment increases thrombopoiesis by sequentially increasing megakaryocyte numbers and maturation and that these effects are diminished by simultaneous administration of the two cytokines.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal