Abstract
Expression of two developmentally regulated carbohydrate antigens, the sialyl stage-specific embryonic antigen-1 (SSEA-1) and I-antigens, in human lymphocytes and lymphocytic leukemia cells was investigated using specific monoclonal antibodies. Sialyl SSEA-1 was expressed only on natural killer (NK) cells, and was essentially absent on resting mature T and B cells among normal peripheral lymphocytes. On the other hand, the I-antigen was strongly expressed on virtually all mature B cells, moderately expressed on most mature T cells, but not expressed on NK cells in normal donors. Expression of the two antigens on normal T and B cells was reversible; in vitro stimulation of normal lymphocytes with concanavalin A (Con A) resulted in the loss of I-antigen and appearance of sialyl SSEA-1 on CD3+ T blasts, whereas stimulation with pokeweed mitogen led to loss of I-antigen expression and appearance of sialyl SSEA-1 antigen on CD19+ B blasts. Among lymphocytic leukemia cells, sialyl SSEA-1 was detected primarily on leukemia cells having immature properties such as most common acute lymphocytic leukemia (cALL) blasts, while the I-antigen was frequently expressed on malignant cells having relatively mature properties, such as those found in adult T- cell leukemia or chronic lymphocytic leukemia, and only occasionally on cALL blasts. Among normal peripheral lymphocytes, the sialyl SSEA-1+I- antigen- NK cells selectively underwent E-selectin (ELAM-1, endothelial- leukocyte adhesion molecule-1)-dependent adhesion to endothelial cells, while the I-antigen+sialyl SSEA-1- mature T and B cells did not, in line with the recent finding that sialyl SSEA-1 serves as a specific ligand for E-selectin. Con A blasts, which are sialyl SSEA-1+I-antigen- , also exhibited significant E-selectin-dependent adhesion to endothelial cells. These results indicate that expression of the sialyl SSEA-1 and I-antigens varies alternately depending on the differentiation/activation status of the lymphocytes, and that this at least partly regulates the behavior of lymphocytes at the vessel wall.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal