Abstract
A new platelet alloantigen, termed CA, has recently been implicated in a case of neonatal alloimmune thrombocytopenia (NATP) in a Filipino family in Canada. Maternal anti-CA serum reacted with glycoprotein (GP) IIIa and maintained its reactivity after removal of high mannose carbohydrate residues from GPIIIa. The monoclonal antibody (MoAb) AP3 partially blocked binding of anti-CA to GPIIIa, suggesting that the CA polymorphism is proximal to the AP3 epitope. Platelet RNA polymerase chain reaction (PCR) was used to amplify the region of GPIIIa cDNA that encodes this region of the protein. DNA sequence analysis showed a G<==>A nucleotide substitution at base 1564 that results in an arginine (Arg) (CGG)<==>glutamine (Gln) (CAG) polymorphism in amino acid (AA) 489. Further analysis of PCR-amplified genomic DNA from 27 normal individuals showed that AA 489 is encoded by a mutational “hot spot” of the GPIIIa gene, as three different codons for the wild-type Arg489 of GPIIIa were also found. The codon usage for Arg489 was found to be: CGG (63%), CGA (37%), and CGC (< 1%). These frequency data were valuable in determining the relationship of the CA alloantigen to the serologically defined TU GPIIIa polymorphism that is present in low frequency in the Finish population. Analyses of PCR-amplified genomic DNA showed the CA and TU alloantigens to be identical at the molecular level. Definition of these new molecular variants of the beta 3 integrin chain should prove valuable in the diagnosis of NATP in these two geographically disparate populations, and it may also provide useful genetic markers for examining other pathologic variations of the GPIIb-IIIa complex.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal