Abstract
Fibrin molecules polymerize to double-stranded fibrils by intermolecular end-to-middle domain pairing of complementary polymerization sites, accompanied by fibril branching to form a clot network. Mass/length measurements on scanning transmission electron microscopic images of fibrils comprising branch points showed two types of junctions. Tetramolecular junctions occur when two fibrils converge, creating a third branch with twice the mass/length of its constituents. Newly recognized trimolecular junctions have three fibril branches of equal mass/length, and occur when an extraneous fibrin molecule initiates branching in a propagating fibril by bridging across two unpaired complementary polymerization sites. When trimolecular junctions predominate, clots exhibit nearly perfect elasticity.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal