Abstract
Eosinophil functions can be modulated by several cytokines such as granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin- 3 (IL-3), and IL-5. We have investigated the modulatory role of these cytokines on the interaction of human eosinophils with opsonized particles (serum-treated zymosan [STZ]). Addition of STZ to eosinophils isolated from the peripheral blood of normal human donors resulted in an interaction of the STZ particles with only 15% to 25% of the cells. Treatment of the eosinophils with GM-CSF, IL-3, or IL-5 strongly enhanced both the rate of particle binding and the percentage of eosinophils binding STZ. The effect of the cytokines is most likely mediated by a change in affinity of the complement receptor type 3 (CR3) on the eosinophils for the complement fragment iC3b on the STZ particles. This is indicated by the observation that (1) the effect of the cytokines on STZ binding was prevented by a monoclonal antibody against the iC3b-binding site on CR3 and (2) the enhanced binding was already apparent before upregulation of CR3 on the cell surface was observed. In a previous study, similar results were obtained with platelet-activating factor (PAF)-primed eosinophils. Because we found that the cytokines strongly enhanced the STZ-induced PAF synthesis, we investigated the role of both released PAF and cell-associated PAF in the priming phenomenon by the cytokines. Cytokine priming appeared to be largely independent of the synthesis of PAF.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal