Abstract
We report a novel, reproducible methodology which enabled 10 human myeloma cell lines (HMCL) to be obtained from each of 10 tumor samples harvested from 9 patients with extramedullary proliferation. Fresh samples were cultured with interleukin 6 (IL-6) and granulocyte macrophage-colony stimulating factor (GM-CSF) at a high cell density and resulting HMCL growth became progressively dependent on IL-6 alone, no longer requiring GM-CSF. These HMCL, which had the same immunoglobulin gene rearrangements as the patients' original myeloma cells, were designated XG-1 to XG-9. XG HMCL had a plasma cell morphology, expressed plasma cell antigen (Ag), namely cytoplasmic immunoglobulins, CD38, B-B4 Ag, and CD77, and lacked the usual B-cell Ag. They also expressed activation antigens such as CD28 with coexpression of CD28 and its ligand, B7 Ag, in four HMCL. Six HMCL expressed CD40, 4 CD23, and 5 its ligand, CD21. The XG HMCL bore adhesion molecules VLA-4 and CD44 (all 10 HMCL), VLA-5 (7 HMCL), and CD56 (4 HMCL). Finally, cytogenetic study of 8 HMCL indicated a 14q+ chromosome, and t(11,14) translocation was found in 6 of 8 and 5 of 8 HMCL, respectively. The possibility of obtaining malignant plasma cell lines reproducibly from each patient with extramedullary proliferation offers a unique tool for studying the phenotype and abnormalities of the still unidentified tumor stem cell in this disease.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal