Abstract
A strategy to phenotype rare populations of hematopoietic cells expressing the cell-surface marker CD34 was studied. The antigenic phenotype of umbilical core blood (CB) CD34+ cells was investigated using flow cytometry and compared with the mRNA-phenotype determined by cDNA-polymerase chain reaction (cDNA-PCR) analysis. The cDNA-PCR method allowed an mRNA evaluation of small numbers of cells. Monoclonal antibodies and oligonucleotide primers that recognize myeloid, lymphoid, erythroid and platelet/megakaryocytic cell membrane antigens or corresponding mRNA transcripts were used. Evaluation by flow cytometry showed that the vast majority of CD34+ CB cells coexpressed CD38, CD18, HLA-DR, and CD33. Rare subpopulations of CD34+CD38-, CD34+CD18-, CD34+HLA-DR-, and CD34+CD33- were also identified. A large proportion of CD34+ CB cells expressed CD13, CD45R, and to a lesser extent CD71. The CD36, CD51, and CD61 antigens were identified on a small number of CD34+ cells. The three-color flow cytometry analysis showed that CD34+ cells stained with antibodies to CD61 and CD36 or CD51 can be divided into subsets that may represent progenitor cells committed to the erythroid and/or megakaryocytic lineage. A variety of other lineage-specific cell-surface antigens including pre-T-cell marker CD7 and markers of early B cells, ie, CD10 and CD19, were not coexpressed with CD34+. Using the cDNA-PCR it was seen that the mRNA phenotype of a small number of sorted CD34+ cells (purity > 98%) was negative for the markers CD2, CD14, CD16, CD20, CD21, CD22, CD41b, and glycophorin A that are expressed on differentiated cells but positive for CD34, CD7, CD19, CD36, and CD61. The results suggest that circulating CD34+CD7+ and CD34+CD19+ CB cells cannot be distinguished by flow cytometry but can be detected by cDNA-PCR. This indicates that CB either contains very low numbers of these progenitors or that the antigen density of CD7 and CD19 on CD34+ cells is below the detection limit of the flow cytometer. In contrast to flow cytometry, cDNA-PCR allows the phenotypic analysis of cells even if their number is small. Thus, the cDNA-PCR method can be useful in linking phenotype analyses, ie, markers of differentiation, to studies on gene expression within rare populations of hematopoietic stem cells.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal