A newly cloned gene named wild-type p53-activated fragment 1 (WAF1; also known as p21, Pic-1, Cip-1, or SDI1) is directly regulated by p53 and can itself suppress tumor cell growth in culture. Induction of expression of WAF1 may be an important means by which cells with DNA injury arrest their growth to repair DNA or undergo apoptosis. Based on the hypothesis that mutations of this gene may play a role in carcinogenesis, we have studied 351 DNAs from 14 kinds of malignancies, as well as 36 human transformed cell lines, for alterations of WAF1 gene by single-strand conformation polymorphism analysis of polymerase chain reaction amplification of the DNA coding region of the WAF1 gene. No abnormal band shifts of WAF1 were noted in any of the samples or cell lines, but three major variants in exons 2 and 3 of the gene were found that are consistent with the existence of two different DNA polymorphisms. Sequence analysis of the amplified products producing these three variants in each exon from normal DNAs confirmed the presence of the polymorphisms in the WAF1 gene. Of 290 selected tumor samples previously evaluated for p53 mutations by single-strand conformation polymorphism, 90% had no detectable p53 alterations. In summary, mutations within the coding portion of the WAF1 gene were undetectable in a large series of human tumors, many of which had a normal p53 gene. This suggests that WAF1 alterations are generally caused indirectly, through p53 mutations rather than through intragenic mutation of the WAF1 itself.
Skip Nav Destination
ARTICLES|
December 1, 1994
Absence of WAF1 mutations in a variety of human malignancies
M Shiohara,
M Shiohara
Division of Hematology/Oncology, Cedars-Sinai Medical Center, UCLA School of Medicine 90048.
Search for other works by this author on:
WS el-Deiry,
WS el-Deiry
Division of Hematology/Oncology, Cedars-Sinai Medical Center, UCLA School of Medicine 90048.
Search for other works by this author on:
M Wada,
M Wada
Division of Hematology/Oncology, Cedars-Sinai Medical Center, UCLA School of Medicine 90048.
Search for other works by this author on:
T Nakamaki,
T Nakamaki
Division of Hematology/Oncology, Cedars-Sinai Medical Center, UCLA School of Medicine 90048.
Search for other works by this author on:
S Takeuchi,
S Takeuchi
Division of Hematology/Oncology, Cedars-Sinai Medical Center, UCLA School of Medicine 90048.
Search for other works by this author on:
R Yang,
R Yang
Division of Hematology/Oncology, Cedars-Sinai Medical Center, UCLA School of Medicine 90048.
Search for other works by this author on:
DL Chen,
DL Chen
Division of Hematology/Oncology, Cedars-Sinai Medical Center, UCLA School of Medicine 90048.
Search for other works by this author on:
B Vogelstein,
B Vogelstein
Division of Hematology/Oncology, Cedars-Sinai Medical Center, UCLA School of Medicine 90048.
Search for other works by this author on:
HP Koeffler
HP Koeffler
Division of Hematology/Oncology, Cedars-Sinai Medical Center, UCLA School of Medicine 90048.
Search for other works by this author on:
Blood (1994) 84 (11): 3781–3784.
Citation
M Shiohara, WS el-Deiry, M Wada, T Nakamaki, S Takeuchi, R Yang, DL Chen, B Vogelstein, HP Koeffler; Absence of WAF1 mutations in a variety of human malignancies. Blood 1994; 84 (11): 3781–3784. doi: https://doi.org/10.1182/blood.V84.11.3781.bloodjournal84113781
Download citation file:
December 1 1994
Advertisement intended for health care professionals
Cited By
Advertisement intended for health care professionals
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal