Abstract
Acute myelomonocytic leukemia with bone marrow eosinophilia (AML-M4Eo in the French-American-British FAB] classification) is frequently associated with pericentric inversion of chromosome 16, inv(16)(p13q22). Recently, the molecular cloning of teh breakpoints has led to the identification of the two fused genes, CBFB on 16q and MYH11 on 16p. We have analyzed 24 patients with AML-M4Eo at diagnosis and 47 patients with AML of other FAB subtypes, by a reverse-transcriptase polymerase chain reaction (RT-PCR) assay for the CBFB/MYH11 fusion mRNAs. Three types of fusion mRNAs were detected in 22 samples of AML- M4Eo (type A, n = 20; type C, n = 1; and type D, n = 1). Among these 22 positive samples, inv(16) was found in the 20 cytogenetically studied cases. No fusion transcript was detected in two patients with AML-M4Eo and in patients with other types of AML. These results confirm that CBFB/MYH11 transcripts (with a predominant type A form) are present in most cases of inv(16) AML. Moreover, detection of the hybrid transcript is closely associated with the finding of abnormal bone marrow (BM) eosinophils in AML-M4Eo as it is not found in other, FAB subtypes of AML, including AML-M4. To assess the presence of type A CBFB/MYH11 fusion transcripts in five AML-M4Eo patients in remission, we designed a sensitive assay combining nested PCR and allele-specific amplification (NPASA). Residual leukemia cells were detected in four patients who were in remission from 4 to 22 months, but not in one patient in long-term remission (5 years). The clinical relevance of persistent CBFB/MYH11 fusion transcripts in remission remains to be established by studying a large prospective series of patients. NPASA provides a useful and sensitive tool for the detection of minimal residual disease in inv(16) AML and, potentially, in other leukemias associated with translocations that result in a predominant fusion transcript.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal