Abstract
Peripheral blood (PB) CD34+ cells from four commonly used mobilization protocols were studied to compare their phenotype and proliferative capacity with steady-state PB or bone marrow (BM) CD34+ cells. Mobilized PB CD34+ cells were collected during hematopoietic recovery after myelosuppressive chemotherapy with or without granulocyte- macrophage colony-stimulating factor (GM-CSF) or granulocyte colony- stimulating factor (G-CSF) or during G-CSF administration alone. The expression of activation and lineage-associated markers and c-kit gene product were studied by flow cytometry. Proliferative capacity was measured by generation of nascent myeloid progenitor cells (granulocyte- macrophage colony-stimulating factor; CFU-GM) and nucleated cells in a stroma-free liquid culture stimulated by a combination of six hematopoietic growth factors (interleukin-1 (IL-1), IL-3, IL-6, GM-CSF, G-CSF, and stem cell factor). G-CSF-mobilized CD34+ cells have the highest percentage of CD38- cells (P < .0081), but otherwise, CD34+ cells from different mobilization protocols were similar to one another in their phenotype and proliferative capacity. The spectrum of primitive and mature myeloid progenitors in mobilized PB CD34+ cells was similar to their steady-state counterparts, but the percentages of CD34+ cells expressing CD10 or CD19 were lower (P < .0028). Although steady-state PB and chemotherapy-mobilized CD34+ cells generated fewer CFU-GM at day 21 than G-CSF-mobilized and steady-state BM CD34+ cells (P < .0449), the generation of nucleated cells and CFU-GM were otherwise comparable. The presence of increased or comparable numbers of hematopoietic progenitors within PB collections with equivalent proliferative capacity to BM CD34+ cells is not unexpected given the rapid and complete hematopoietic reconstitution observed with mobilized PB. However, all four types of mobilized PB CD34+ cells are different from steady-state BM CD34+ cells in that they express less c-kit (P < .0002) and CD71 (P < .04) and retain less rhodamine 123 (P < .0001). These observations are novel and suggest that different mobilization protocols may act via similar pathways involving the down-regulation of c-kit and may be independent of cell-cycle status.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal