Structurally and functionally distinct F-actin pools coexist with globular (G)-actin in a variety of eukaryotic cells, including polymorphonuclear leukocytes (PMNs). In PMNs, a Triton-soluble F-actin pool (TSF) exists as short cytoplasmic filaments capped with gelsolin, while Triton-insoluble F-actin (TIF) is a three-dimensional meshwork of F-actin associated with actin-binding protein 280 (ABP-280), alpha-actinin, and tropomyosin. The unique association of gelsolin with the TSF suggests a role for gelsolin in creation or regulation of TSF. To evaluate gelsolin's role in TSF formation, the quantities of actin and gelsolin were determined by quantitative sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblots in uninduced HL-60 cells (U-HL-60) and in HL-60 cells induced to myeloid differentiation with 1.25% dimethyl sulfoxide for 4 to 5 days (I-HL-60). U-HL-60 cells contain 17.76 +/- 6.01 pmol actin per 10(6) cells (TIF, 5.3 +/- 1.5; TSF, 2.17 +/- 0.37; G, 10.3 +/- 5.7; n = 5) and 0.073 pmol gelsolin per 10(6) cells (TIF, 0; TSF, 0.002 +/- 0.005; G, 0.07 +/- 0.01; n = 3), representing molar actin to gelsolin (A:G) ratios of 1,085:1 for TSF and 147:1 for G. After myeloid differentiation, the actin content increases 1.80-fold (31.94 +/- 6.14 pmol/10(6) cells) equally in each actin pool (TIF, 9.36 +/- 2.35; TSF, 3.29 +/- 0.62; G, 19.29 +/- 4.83). Gelsolin increases 2.4-fold overall (0.178 +/- 0.02 pmol/10(6) cells) but 19-fold in TSF (0.038 +/- 0.009) and only 1.9-fold in G pool (0.139 +/- 0.006), resulting in A:G ratios of 87:1 in TSF and 139:1 in G. The findings of an increase in TSF gelsolin with decreased A:G ratios (1,085:1 v 87:1) with myeloid differentiation suggest shortening of TSF filaments, while the A:G ratios of unbound gelsolin are unchanged (147:1 v 139:1). Measurement of EGTA-resistant gelsolin/actin complexes in HL-60 cells shows that 95% to 100% of complexes exist in the TSF-actin pool only. These findings are consistent with a role for gelsolin in formation and organization of Triton-soluble F-actin. Furthermore, the apparent shortening of TSF-actin filaments with myeloid cellular differentiation and maturation may represent one mechanism of conversion of the nonmotile myeloblast to the motile PMN.
Skip Nav Destination
ARTICLES|
April 15, 1995
Role of gelsolin in the formation and organization of triton-soluble F- actin during myeloid differentiation of HL-60 cells
RG Watts
RG Watts
Department of Pediatrics, University of Alabama at Birmingham 35233, USA.
Search for other works by this author on:
Blood (1995) 85 (8): 2212–2221.
Citation
RG Watts; Role of gelsolin in the formation and organization of triton-soluble F- actin during myeloid differentiation of HL-60 cells. Blood 1995; 85 (8): 2212–2221. doi: https://doi.org/10.1182/blood.V85.8.2212.bloodjournal8582212
Download citation file:
April 15 1995
Advertisement intended for health care professionals
Cited By
Advertisement intended for health care professionals
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal