A developmental alternative splicing switch, involving exon 16 of protein 4.1 pre-mRNA, occurs during mammalian erythropoiesis. By controlling expression of a 21-amino acid peptide required for high- affinity interaction of protein 4.1 with spectrin and actin, this switch helps to regulate erythrocyte membrane mechanical stability. Here we show that key aspects of protein 4.1 structure and function are conserved in nucleated erythroid cells of the amphibian Xenopus laevis. Analysis of protein 4.1 cDNA sequences cloned from Xenopus erythrocytes and oocytes showed that tissue-specific alternative splicing of exon 16 also occurs in frogs. Importantly, functional studies with recombinant Xenopus erythroid 4.1 demonstrated specific binding to and mechanical stabilization of 4.1-deficient human erythrocyte membranes. Phylogenetic sequence comparison showed two evolutionarily conserved peptides that represent candidate spectrin-actin binding sites. Finally, in situ hybridization of early embryos showed high expression of 4.1 mRNA in ventral blood islands and in developing brain structures. These results demonstrate that regulated expression of structurally and functionally distinct protein 4.1 isoforms, mediated by tissue-specific alternative splicing, has been highly evolutionarily conserved. Moreover, both nucleated amphibian erythrocytes and their enucleated mammalian counterparts express 4.1 isoforms functionally competent for spectrin-actin binding.
Skip Nav Destination
ARTICLES|
December 1, 1995
Evolutionarily conserved alternative pre-mRNA splicing regulates structure and function of the spectrin-actin binding domain of erythroid protein 4.1
R Winardi,
R Winardi
Life Sciences Division, Lawrence Berkeley National Laboratory, University of California 94720, USA.
Search for other works by this author on:
D Discher,
D Discher
Life Sciences Division, Lawrence Berkeley National Laboratory, University of California 94720, USA.
Search for other works by this author on:
C Kelley,
C Kelley
Life Sciences Division, Lawrence Berkeley National Laboratory, University of California 94720, USA.
Search for other works by this author on:
L Zon,
L Zon
Life Sciences Division, Lawrence Berkeley National Laboratory, University of California 94720, USA.
Search for other works by this author on:
K Mays,
K Mays
Life Sciences Division, Lawrence Berkeley National Laboratory, University of California 94720, USA.
Search for other works by this author on:
N Mohandas,
N Mohandas
Life Sciences Division, Lawrence Berkeley National Laboratory, University of California 94720, USA.
Search for other works by this author on:
JG Conboy
JG Conboy
Life Sciences Division, Lawrence Berkeley National Laboratory, University of California 94720, USA.
Search for other works by this author on:
Blood (1995) 86 (11): 4315–4322.
Citation
R Winardi, D Discher, C Kelley, L Zon, K Mays, N Mohandas, JG Conboy; Evolutionarily conserved alternative pre-mRNA splicing regulates structure and function of the spectrin-actin binding domain of erythroid protein 4.1. Blood 1995; 86 (11): 4315–4322. doi: https://doi.org/10.1182/blood.V86.11.4315.bloodjournal86114315
Download citation file:
December 1 1995
Advertisement intended for health care professionals
Cited By
Advertisement intended for health care professionals
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal