Elevation of cytoplasmic Ca2+ levels in human erythrocytes induces a progressive loss of membrane phospholipid asymmetry, a process that is impaired in erythrocytes from a patient with Scott syndrome. We show here that porcine erythrocytes are similarly incapable of Ca(2+)- induced redistribution of membrane phospholipids. Because a complex of phosphatidylinositol 4,5-bisphosphate (PIP2) and Ca2+ has been proposed as the mediator of enhanced transbilayer movement of lipids (J Biol Chem 269:6347,1994), these cell systems offer a unique opportunity for testing this mechanism. Analysis of both total PIP2 content and the metabolic-resistant pool of PIP2 that remains after incubation with Ca2+ ionophore showed no appreciable differences between normal and Scott erythrocytes. Moreover, porcine erythrocytes were found to have slightly higher levels of both total and metabolic-resistant PIP2 in comparison with normal human erythrocytes. Although loading of normal erythrocytes with exogenously added PIP2 gave rise to a Ca(2+)-induced increase in prothrombinase activity and apparent transbilayer movement of nitrobenzoxadiazolyl (NBD)-phospholipids, these PIP2-loaded cells were also found to undergo progressive Ca(2+)-dependent cell lysis, which seriously hampers interpretation of these data. Moreover, loading Scott cells with PIP2 did not abolish their impaired lipid scrambling, even in the presence of a Ca(2+)-ionophore. Finally, artificial lipid vesicles containing no PIP2 or 1 mole percent of PIP2 were indistinguishable with respect to transbilayer movement of NBD- phosphatidylcholine in the presence of Ca2+. Our findings suggest that Ca(2+)-induced redistribution of membrane phospholipids cannot simply be attributed to the steady-state concentration of PIP2, and imply that such lipid movement is regulated by other cellular processes.
Skip Nav Destination
ARTICLES|
September 1, 1995
The complex of phosphatidylinositol 4,5-bisphosphate and calcium ions is not responsible for Ca(2+)-induced loss of phospholipid asymmetry in the human erythrocyte: a study in Scott syndrome, a disorder of calcium- induced phospholipid scrambling Free
EM Bevers,
EM Bevers
Department of Biochemistry, Cardiovascular Research Institute Maastricht, University of Limburg, The Netherlands.
Search for other works by this author on:
T Wiedmer,
T Wiedmer
Department of Biochemistry, Cardiovascular Research Institute Maastricht, University of Limburg, The Netherlands.
Search for other works by this author on:
P Comfurius,
P Comfurius
Department of Biochemistry, Cardiovascular Research Institute Maastricht, University of Limburg, The Netherlands.
Search for other works by this author on:
J Zhao,
J Zhao
Department of Biochemistry, Cardiovascular Research Institute Maastricht, University of Limburg, The Netherlands.
Search for other works by this author on:
EF Smeets,
EF Smeets
Department of Biochemistry, Cardiovascular Research Institute Maastricht, University of Limburg, The Netherlands.
Search for other works by this author on:
RA Schlegel,
RA Schlegel
Department of Biochemistry, Cardiovascular Research Institute Maastricht, University of Limburg, The Netherlands.
Search for other works by this author on:
AJ Schroit,
AJ Schroit
Department of Biochemistry, Cardiovascular Research Institute Maastricht, University of Limburg, The Netherlands.
Search for other works by this author on:
HJ Weiss,
HJ Weiss
Department of Biochemistry, Cardiovascular Research Institute Maastricht, University of Limburg, The Netherlands.
Search for other works by this author on:
P Williamson,
P Williamson
Department of Biochemistry, Cardiovascular Research Institute Maastricht, University of Limburg, The Netherlands.
Search for other works by this author on:
RF Zwaal
RF Zwaal
Department of Biochemistry, Cardiovascular Research Institute Maastricht, University of Limburg, The Netherlands.
Search for other works by this author on:
Blood (1995) 86 (5): 1983–1991.
Citation
EM Bevers, T Wiedmer, P Comfurius, J Zhao, EF Smeets, RA Schlegel, AJ Schroit, HJ Weiss, P Williamson, RF Zwaal; The complex of phosphatidylinositol 4,5-bisphosphate and calcium ions is not responsible for Ca(2+)-induced loss of phospholipid asymmetry in the human erythrocyte: a study in Scott syndrome, a disorder of calcium- induced phospholipid scrambling. Blood 1995; 86 (5): 1983–1991. doi: https://doi.org/10.1182/blood.V86.5.1983.bloodjournal8651983
Download citation file:
September 1 1995
Advertisement intended for health care professionals
Cited By
Email alerts
Advertisement intended for health care professionals
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal