Both copies of a repeated sequence CATT(A/T), located between bp -53 and -39 in the upstream region of the human GM-CSF gene, are required for mitogen-inducible promoter activity in T lymphocytes. However, the proteins that recognize this region of the granulocyte-macrophage colony-stimulating factor (GM-CSF) promoter, and are responsible for its transcriptional regulatory activity, have not been clearly identified. Using transient transfection assays, we demonstrate that a 19-bp oligonucleotide containing the CATT(A/T) repeats has strong constitutive enhancer activity in both T cell and non-T-cell lines, even though GM-CSF is not normally constitutively expressed by these cells. A 12-bp oligonucleotide, containing only the sequence CATTAATCATTT, lacks enhancer activity indicating that the nucleotides surrounding these sequences are critical for this enhancer activity. The sequence TTTCCT, which can bind members of the ets family of transcription factors, is located just 3′ of these CATT(A/T) repeats, and mutagenesis of the CCT sequence abolishes (1) the constitutive (and mitogen inducible) enhancer activity of the 19-bp GM-CSF sequences, (2) the responsiveness to transactivation by ets-1, and (3) the ability to specifically bind ets-1 and elf-1 in electrophoretic mobility shift assays (EMSA). We demonstrate that although T cells contain nuclear proteins capable of independently recognizing the ets binding site and the CATT(A/T) repeats in EMSAs, both of these regulatory elements are required for enhancer function. The strong constitutive activity of this 19-bp region suggests that negative regulation of the GM-CSF promoter is critical for the restricted expression pattern of GM-CSF mRNA.
Skip Nav Destination
ARTICLES|
May 1, 1996
Adjacent, cooperative elements form a strong, constitutive enhancer in the human granulocyte-macrophage colony-stimulating factor gene [published erratum appears in Blood 1996 Oct 1;88(7):2818]
SD Nimer,
SD Nimer
Laboratory of Molecular Hematopoiesis, Sloan-Kettering Institute, New York, NY, USA.
Search for other works by this author on:
W Zhang,
W Zhang
Laboratory of Molecular Hematopoiesis, Sloan-Kettering Institute, New York, NY, USA.
Search for other works by this author on:
K Kwan,
K Kwan
Laboratory of Molecular Hematopoiesis, Sloan-Kettering Institute, New York, NY, USA.
Search for other works by this author on:
Y Whang,
Y Whang
Laboratory of Molecular Hematopoiesis, Sloan-Kettering Institute, New York, NY, USA.
Search for other works by this author on:
J Zhang,
J Zhang
Laboratory of Molecular Hematopoiesis, Sloan-Kettering Institute, New York, NY, USA.
Search for other works by this author on:
Y] Wang Y [corrected to Whang
Y] Wang Y [corrected to Whang
Laboratory of Molecular Hematopoiesis, Sloan-Kettering Institute, New York, NY, USA.
Search for other works by this author on:
Blood (1996) 87 (9): 3694–3703.
Citation
SD Nimer, W Zhang, K Kwan, Y Whang, J Zhang, Y] Wang Y [corrected to Whang; Adjacent, cooperative elements form a strong, constitutive enhancer in the human granulocyte-macrophage colony-stimulating factor gene [published erratum appears in Blood 1996 Oct 1;88(7):2818]. Blood 1996; 87 (9): 3694–3703. doi: https://doi.org/10.1182/blood.V87.9.3694.bloodjournal8793694
Download citation file:
May 1 1996
Advertisement intended for health care professionals
Cited By
Advertisement intended for health care professionals
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal