Abstract
Platelets bound to thrombogenic surfaces have been shown to support activation-dependent firm adhesion of neutrophils in flow following selectin-mediated tethering and rolling. The specific receptor(s) responsible for mediating adhesion-strengthening interactions between neutrophils and platelets has not previously been identified. Furthermore, the ability of adherent platelets to support the migration of bound neutrophils has not been tested. We studied neutrophil interactions with activated, surface-adherent platelets as a model for leukocyte binding in vascular shear flow and emigration at thrombogenic sites. Our results demonstrate that the beta 2-integrin Mac-1 (CD11b/CD18) is required for both firm attachment to and transmigration of neutrophils across surface-adherent platelets. In flow assays, neutrophils from patients with leukocyte adhesion deficiency-1 (LAD-I), which lack beta 2-integrin receptors, formed P-selectin-mediated rolling interactions, but were unable to develop firm adhesion to activated platelets, in contrast to healthy neutrophils, which developed firm adhesion within 5 to 30 seconds after initiation of rolling. Furthermore, the adhesion-strengthening interaction observed for healthy neutrophils could be specifically inhibited by monoclonal antibodies (mAbs) to Mac-1, but not to lymphocyte function-associated antigen-1 (LFA-1; CD11a/CD18) or intercellular adhesion molecule-2 (ICAM-2; CD102). Further evidence for a beta 2-integrin-dependent neutrophil/platelet interaction is demonstrated by the complete inhibition of interleukin (IL)-8-induced neutrophil transmigration across platelets bound to fibronectin-coated polycarbonate filters by mAbs to Mac-1. Thus, Mac-1 is required for firm adhesion of neutrophils to activated, adherent platelets and may play an important role in promoting neutrophil accumulation on and migration across platelets deposited at sites of vascular injury.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal