Abstract
Nitric oxide (NO) is a paramagnetic gas that has been implicated in a wide range of biologic functions. The common pathway to evoke the functional response frequently involves the formation of an iron- nitrosyl complex in a target (heme) protein. In this study, we report on the interactions between NO and cobalt-containing vitamin B12 derivatives. Absorption spectroscopy showed that of the four Co(III) derivatives (cyanocobalamin [CN-Cbl], aquocobalamin [H2O-Cbl], adenosylcobalamin [Ado-Cbl], and methylcobalamin [MeCbl]), only the H2O- Cbl combined with NO. In addition, electron paramagnetic resonance spectroscopy of H2O-Cbl preparations showed the presence of a small amount of Cob-(II)alamin that was capable of combining with NO. The Co(III)-NO complex was very stable, but could transfer its NO moiety to hemoglobin (Hb). The transfer was accompanied by a reduction of the Co(III) to Co(II), indicating that NO+ (nitrosonium) was the leaving group. In accordance with this, the NO did not combine with the Hb Fe(II)-heme, but most likely with the Hb cysteine-thiolate. Similarly, the Co(III)-NO complex was capable of transferring its NO to glutathione. Ado-Cbl and Me-Cbl were susceptible to photolysis, but CN- Cbl and H2O-Cbl were not. The homolytic cleavage of the Co(III)-Ado or Co(III)-Me bond resulted in the reduction of the metal. When photolysis was performed in the presence of NO, formation of NO-Co(II) was observed. Co(II)-nitrosyl oxidized slowly to form Co(III)-nitrosyl. The capability of aquocobalamin to combine with NO had functional consequences. We found that nitrosylcobalamin had diminished ability to serve as a cofactor for the enzyme methionine synthase, and that aquocobalamin could quench NO-mediated inhibition of cell proliferation. Our in vitro studies therefore suggest that interactions between NO and cobalamins may have important consequences in vivo.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal