Key Points
Cytosine base editing to generate a gain-of-function F9 variant enhances FIX activity in a broad subset of hemophilia B variants.
Liver-targeted base-editing to introduce a gain-of-function F9 variant may represent a therapeutic option for hemophilia B.
The repair of pathological gene variants is an ultimate aim for treating genetic diseases; however, the development of different therapeutic reagents for each of the many variants that can occur in a gene may not be scalable. Here, we investigated whether base editing to introduce a gain-of-function variant in blood coagulation factor IX (FIX) can increase FIX activity as a targeted therapeutic approach for hemophilia B. We engineered a G:C to A:T substitution at c.1151 of F9 by cytosine base editing to generate R338Q, known as the Shanghai F9 variant, which markedly potentiates coagulation factor activity. An adeno-associated virus vector harboring the base editor converted more than 60% of the target G:C to A:T and increased FIX activity in HEK293 cells harboring patient-derived F9 variants, as well as in knock-in mice harboring a human F9 cDNA. Furthermore, administration of lipid nanoparticles embedded with the base editor mRNA and gRNA increased FIX activity in mice. These data indicate that cytosine base editing to generate R338Q in FIX is a broadly applicable genome editing approach for hemophilia B with residual FIX activity.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal