• The endothelial mTORC2-Foxo1 axis acutely and dynamically responds to iron to regulate systemic iron homeostasis via BMP-induced hepcidin.

  • The mTORC2-Foxo1 axis represents a potential therapeutic target for hereditary hemochromatosis.

Abstract

Liver sinusoidal endothelial cells (LSECs) are essential for maintaining liver function by actively sensing nutrients and producing angiocrine factors. LSECs also regulate systemic iron metabolism by secreting bone morphogenetic proteins (BMPs), which are key modulators of systemic iron homeostasis. However, the mechanism by which LSECs sense iron to regulate iron metabolism remains unclear. Here, we identify that the endothelial transcriptional factor forkhead box protein O1 (Foxo1) and its upstream protein kinase, mechanistic target of rapamycin complex 2 (mTORC2), as critical iron sensors. In response to iron, Foxo1 undergoes acute and dynamic nuclear translocation to activate the transcription of Bmp2 and Bmp6, thereby stimulating the synthesis of iron-regulatory hormone hepcidin in adjacent hepatocytes. Foxo1 directly binds evolutionally conserved Foxo binding sites within the Bmp2 and Bmp6 promoters to mediate this response. Mechanistically, iron triggers the lysosomal degradation of the mTORC2-specific component rapamycin-insensitive companion of mTOR (Rictor), enhancing Foxo1 activation. Endothelial-specific Foxo1 deletion reduces the expressions of hepatic Bmp2/6 and hepcidin, leading to systemic iron overload, whereas endothelial Rictor deletion increases the expressions of hepatic Bmp2/6 and hepcidin, producing an iron-deficient phenotype. Moreover, endothelial-targeted lipid nanoparticles expressing endothelial-specific and constitutively active Foxo1 alleviate iron overload in a murine model of hereditary hemochromatosis. Collectively, our study establishes the endothelial mTORC2-Foxo1 axis as an iron-responsive regulator of Bmp2 and Bmp6 expression and identifies it as a promising target for iron-related disorders.

1.
Augustin
HG
,
Koh
GY
.
A systems view of the vascular endothelium in health and disease
.
Cell
.
2024
;
187
(
18
):
4833
-
4858
.
2.
Gracia-Sancho
J
,
Caparrós
E
,
Fernández-Iglesias
A
,
Francés
R
.
Role of liver sinusoidal endothelial cells in liver diseases
.
Nat Rev Gastroenterol Hepatol
.
2021
;
18
(
6
):
411
-
431
.
3.
Lim
PJ
,
Duarte
TL
,
Arezes
J
, et al
.
Nrf2 controls iron homeostasis in haemochromatosis and thalassaemia via Bmp6 and hepcidin
.
Nat Metab
.
2019
;
1
(
5
):
519
-
531
.
4.
Fisher
AL
,
Wang
CY
,
Xu
Y
, et al
.
Functional role of endothelial transferrin receptor 1 in iron sensing and homeostasis
.
Am J Hematol
.
2022
;
97
(
12
):
1548
-
1559
.
5.
Charlebois
E
,
Fillebeen
C
,
Presley
J
, et al
.
Liver sinusoidal endothelial cells induce BMP6 expression in response to non–transferrin-bound iron
.
Blood
.
2023
;
141
(
3
):
271
-
284
.
6.
Galy
B
,
Conrad
M
,
Muckenthaler
M
.
Mechanisms controlling cellular and systemic iron homeostasis
.
Nat Rev Mol Cell Biol
.
2024
;
25
(
2
):
133
-
155
.
7.
Nemeth
E
,
Ganz
T
.
Hepcidin and iron in health and disease
.
Annu Rev Med
.
2023
;
74
(
1
):
261
-
277
.
8.
Nemeth
E
,
Tuttle
MS
,
Powelson
J
, et al
.
Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization
.
Science
.
2004
;
306
(
5704
):
2090
-
2093
.
9.
Daher
R
,
Kannengiesser
C
,
Houamel
D
, et al
.
Heterozygous mutations in BMP6 pro-peptide lead to inappropriate hepcidin synthesis and moderate iron overload in humans
.
Gastroenterology
.
2016
;
150
(
3
):
672
-
683.e4
.
10.
Piubelli
C
,
Castagna
A
,
Marchi
G
, et al
.
Identification of new BMP6 pro-peptide mutations in patients with iron overload
.
Am J Hematol
.
2017
;
92
(
6
):
562
-
568
.
11.
Koch
P-S
,
Olsavszky
V
,
Ulbrich
F
, et al
.
Angiocrine Bmp2 signaling in murine liver controls normal iron homeostasis
.
Blood
.
2017
;
129
(
4
):
415
-
419
.
12.
Wang
CY
,
Canali
S
,
Bayer
A
,
Dev
S
,
Agarwal
A
,
Babitt
JL
.
Iron, erythropoietin, and inflammation regulate hepcidin in Bmp2-deficient mice, but serum iron fails to induce hepcidin in Bmp6-deficient mice
.
Am J Hematol
.
2019
;
94
(
2
):
240
-
248
.
13.
Canali
S
,
Zumbrennen-Bullough
KB
,
Core
AB
, et al
.
Endothelial cells produce bone morphogenetic protein 6 required for iron homeostasis in mice
.
Blood
.
2017
;
129
(
4
):
405
-
414
.
14.
Xiao
X
,
Xu
Y
,
Moschetta
GA
, et al
.
BMP5 contributes to hepcidin regulation and systemic iron homeostasis in mice
.
Blood
.
2023
;
142
(
15
):
1312
-
1322
.
15.
Corradini
E
,
Meynard
D
,
Wu
Q
, et al
.
Serum and liver iron differently regulate the bone morphogenetic protein 6 (BMP6)-SMAD signaling pathway in mice
.
Hepatology
.
2011
;
54
(
1
):
273
-
284
.
16.
Fisher
AL
,
Phillips
S
,
Wang
C-Y
, et al
.
Endothelial ZIP8 plays a minor role in BMP6 regulation by iron in mice
.
Blood
.
2024
;
143
(
23
):
2433
-
2437
.
17.
Zurawska
G
,
Jończy
A
,
Niklewicz
M
, et al
.
Iron-triggered signaling via ETS1 and the p38/JNK MAPK pathway regulates Bmp6 expression
.
Am J Hematol
.
2024
;
99
(
4
):
543
-
554
.
18.
Fisher
AL
,
Wang
C-Y
,
Xu
Y
, et al
.
Quantitative proteomics and RNA-sequencing of mouse liver endothelial cells identify novel regulators of BMP6 by iron
.
iScience
.
2023
;
26
(
12
):
108555
.
19.
Wilhelm
K
,
Happel
K
,
Eelen
G
, et al
.
FOXO1 couples metabolic activity and growth state in the vascular endothelium
.
Nature
.
2016
;
529
(
7585
):
216
-
220
.
20.
Dharaneeswaran
H
,
Abid
MR
,
Yuan
L
, et al
.
FOXO1-mediated activation of Akt plays a critical role in vascular homeostasis
.
Circ Res
.
2014
;
115
(
2
):
238
-
251
.
21.
Andrade
J
,
Shi
C
,
Costa
ASH
, et al
.
Control of endothelial quiescence by FOXO-regulated metabolites
.
Nat Cell Biol
.
2021
;
23
(
4
):
413
-
423
.
22.
Abid
MR
,
Guo
S
,
Minami
T
, et al
.
Vascular endothelial growth factor activates PI3K/Akt/Forkhead signaling in endothelial cells
.
Arterioscler Thromb Vasc Biol
.
2004
;
24
(
2
):
294
-
300
.
23.
Duarte
TL
,
Neves
JV
.
Measurement of tissue non-heme iron content using a bathophenanthroline-based colorimetric assay
.
J Vis Exp
.
2022
;
179
:
e63469
.
24.
Zhang
K
,
Guo
X
,
Yan
H
, et al
.
Phosphorylation of forkhead protein FoxO1 at S253 regulates glucose homeostasis in mice
.
Endocrinology
.
2019
;
160
(
5
):
1333
-
1347
.
25.
Xu
T
,
Zhang
X
,
Zhao
W
, et al
.
Foxo1 is an iron-responsive transcriptional factor regulating systemic iron homeostasis
.
Blood
.
2024
;
144
(
12
):
1314
-
1328
.
26.
Calissi
G
,
Lam
EWF
,
Link
W
.
Therapeutic strategies targeting FOXO transcription factors
.
Nat Rev Drug Discov
.
2021
;
20
(
1
):
21
-
38
.
27.
Nagashima
T
,
Shigematsu
N
,
Maruki
R
, et al
.
Discovery of novel forkhead box O1 inhibitors for treating type 2 diabetes: improvement of fasting glycemia in diabetic db/db mice
.
Mol Pharmacol
.
2010
;
78
(
5
):
961
-
970
.
28.
Lee
J-W
,
Chen
H
,
Pullikotil
P
,
Quon
MJ
.
Protein kinase A-α directly phosphorylates FoxO1 in vascular endothelial cells to regulate expression of vascular cellular adhesion molecule-1 mRNA
.
J Biol Chem
.
2011
;
286
(
8
):
6423
-
6432
.
29.
Cautain
B
,
Castillo
F
,
Musso
L
, et al
.
Discovery of a novel, isothiazolonaphthoquinone-based small molecule activator of FOXO nuclear-cytoplasmic shuttling
.
PLoS One
.
2016
;
11
(
12
):
e0167491
.
30.
Guertin
DA
,
Stevens
DM
,
Thoreen
CC
, et al
.
Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCα, but not S6K1
.
Dev Cell
.
2006
;
11
(
6
):
859
-
871
.
31.
Liu
GY
,
Sabatini
DM
.
mTOR at the nexus of nutrition, growth, ageing and disease
.
Nat Rev Mol Cell Biol
.
2020
;
21
(
4
):
183
-
203
.
32.
Zhang
A
,
Liu
Y
,
Xu
H
, et al
.
CCL17 exerts neuroprotection through activation of CCR4/mTORC2 axis in microglia after subarachnoid haemorrhage in rats
.
Stroke Vasc Neurol
.
2022
;
8
(
1
):
4
-
16
.
33.
Edwards
SR
,
Wandless
TJ
.
The rapamycin-binding domain of the protein kinase mammalian target of rapamycin is a destabilizing domain
.
J Biol Chem
.
2007
;
282
(
18
):
13395
-
13401
.
34.
Liu
Q
,
Wang
J
,
Kang
SA
,
Thoreen
CC
, et al
.
Discovery of 9-(6-aminopyridin-3-yl)-1-(3-(trifluoromethyl)phenyl)benzo[h] [1,6]naphthyridin-2(1H)-one (Torin2) as a potent, selective, and orally available mammalian target of rapamycin (mTOR) inhibitor for treatment of cancer
.
J Med Chem
.
2011
;
54
(
5
):
1473
-
1480
.
35.
Zhao
Y
,
Tian
Y
,
Zhang
J
, et al
.
Effects of an oral allosteric AKT inhibitor (MK-2206) on human nasopharyngeal cancer in vitro and in vivo
.
Drug Des Devel Ther
.
2014
;
8
:
1827
-
1837
.
36.
Toullec
D
,
Pianetti
P
,
Coste
H
, et al
.
The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C
.
J Biol Chem
.
1991
;
266
(
24
):
15771
-
15781
.
37.
Sherk
AB
,
Frigo
DE
,
Schnackenberg
CG
, et al
.
Development of a small-molecule serum- and glucocorticoid-regulated kinase-1 antagonist and its evaluation as a prostate cancer therapeutic
.
Cancer Res
.
2008
;
68
(
18
):
7475
-
7483
.
38.
Furukawa
K
,
Estus
S
,
Fu
W
,
Mark
RJ
,
Mattson
MP
.
Neuroprotective action of cycloheximide involves induction of Bcl-2 and antioxidant pathways
.
J Cell Biol
.
1997
;
136
(
5
):
1137
-
1149
.
39.
Bowman
EJ
,
Siebers
A
,
Altendorf
K
.
Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells
.
Proc Natl Acad Sci U S A
.
1988
;
85
(
21
):
7972
-
7976
.
40.
Bonuccelli
G
,
Sotgia
F
,
Schubert
W
, et al
.
Proteasome inhibitor (MG-132) treatment of mdx mice rescues the expression and membrane localization of dystrophin and dystrophin-associated proteins
.
Am J Pathol
.
2003
;
163
(
4
):
1663
-
1675
.
41.
Cheng
Y
,
Qu
W
,
Li
J
, et al
.
Ferristatin II, an iron uptake inhibitor, exerts neuroprotection against traumatic brain injury via suppressing ferroptosis
.
ACS Chem Neurosci
.
2022
;
13
(
5
):
664
-
675
.
42.
Shiota
C
,
Woo
J-T
,
Lindner
J
,
Shelton
KD
,
Magnuson
MA
.
Multiallelic disruption of the rictor gene in mice reveals that mTOR complex 2 is essential for fetal growth and viability
.
Dev Cell
.
2006
;
11
(
4
):
583
-
589
.
43.
Ahmad
KA
,
Ahmann
JR
,
Migas
MC
, et al
.
Decreased liver hepcidin expression in the Hfe knockout mouse
.
Blood Cells Mol Dis
.
2002
;
29
(
3
):
361
-
366
.
44.
Cheng
Q
,
Wei
T
,
Farbiak
L
,
Johnson
LT
,
Dilliard
SA
,
Siegwart
DJ
.
Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing
.
Nat Nanotechnol
.
2020
;
15
(
4
):
313
-
320
.
45.
Dilliard
SA
,
Cheng
Q
,
Siegwart
DJ
.
On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles
.
Proc Natl Acad Sci U S A
.
2021
;
118
(
52
):
e2109256118
.
46.
Rudnicki
M
,
Abdifarkosh
G
,
Nwadozi
E
, et al
.
Endothelial-specific FoxO1 depletion prevents obesity-related disorders by increasing vascular metabolism and growth
.
eLife
.
2018
;
7
:
e39780
.
47.
Sarbassov
DD
,
Guertin
DA
,
Ali
SM
,
Sabatini
DM
.
Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex
.
Science
.
2005
;
307
(
5712
):
1098
-
1101
.
48.
Wang
S
,
Amato
KR
,
Song
W
, et al
.
Regulation of endothelial cell proliferation and vascular assembly through distinct mTORC2 signaling pathways
.
Mol Cell Biol
.
2015
;
35
(
7
):
1299
-
1313
.
49.
Li
W
,
Petrimpol
M
,
Molle
KD
,
Hall
MN
,
Battegay
EJ
,
Humar
R
.
Hypoxia-induced endothelial proliferation requires both mTORC1 and mTORC2
.
Circ Res
.
2007
;
100
(
1
):
79
-
87
.
50.
Aimi
F
,
Georgiopoulou
S
,
Kalus
I
, et al
.
Endothelial rictor is crucial for midgestational development and sustained and extensive FGF2-induced neovascularization in the adult
.
Sci Rep
.
2015
;
5
(
1
):
17705
.
51.
Kalucka
J
,
de Rooij
LPMH
,
Goveia
J
, et al
.
Single-cell transcriptome atlas of murine endothelial cells
.
Cell
.
2020
;
180
(
4
):
764
-
779.e20
.
52.
Grahammer
F
,
Nesterov
V
,
Ahmed
A
, et al
.
mTORC2 critically regulates renal potassium handling
.
J Clin Invest
.
2016
;
126
(
5
):
1773
-
1782
.
53.
Saha
B
,
Shabbir
W
,
Takagi
E
, et al
.
Potassium activates mTORC2-dependent SGK1 phosphorylation to stimulate epithelial sodium channel: role in rapid renal responses to dietary potassium
.
J Am Soc Nephrol
.
2023
;
34
(
6
):
1019
-
1038
.
54.
An
P
,
Xu
W
,
Luo
J
,
Luo
Y
.
Expanding TOR complex 2 signaling: emerging regulators and new connections
.
Front Cell Dev Biol
.
2021
;
9
:
713806
.
55.
Colucci
S
,
Altamura
S
,
Marques
O
, et al
.
Iron-dependent BMP6 regulation in liver sinusoidal endothelial cells is instructed by hepatocyte-derived secretory signals
.
HemaSphere
.
2022
;
6
(
10
):
e773
.
You do not currently have access to this content.
Sign in via your Institution