• GPCRs downstream of β-arrestins are the direct pathogenic targets of homocysteine.

  • HHcy acts as a modulator of GPCR-biased signaling, suggesting that G-biased agonists are better choices for disease treatment under HHcy.

Abstract

Hyperhomocysteinemia (HHcy) is strongly associated with cardiovascular diseases (CVDs), and it has been identified as a risk factor for thrombotic diseases. Most patients with HHcy die from various complications closely related to thrombotic diseases. However, the underlying mechanisms have not been fully elucidated. G protein-coupled receptors (GPCRs), the central regulators of the cardiovascular system, primarily control platelet activation. By examining the effects of HHcy on a panel of GPCRs involved in platelet aggregation, we found that HHcy systematically modulated biased GPCR signaling through the inhibition of desensitization by β-arrestins and the amplification of G protein signals. We further revealed that the N-homocysteinylation of β-arrestin1/2 at lysine (K) residues (K294/K296) disrupted the interaction between β-arrestins and GPCRs. The aforementioned phenomenon may be universal because HHcy was found to modulate the signaling bias of 9 other randomly selected GPCRs. Moreover, we found that the proinflammatory effects of homocysteine and homocysteine thiolactone were weakened in Arrb2–/– mice and that the reintroduction of wild-type but not K296R β-arrestin2 mutants (in mice) into primary peritoneal macrophages reversed these effects. Notably, in Arrb2K296R mice, HHcy-induced thrombus formation and platelet aggregation were reversed. Our results suggest that a G-biased agonist could be a better choice for disease therapy under HHcy conditions. Collectively, our findings demonstrate that the N-homocysteinylation of β-arrestin1/β-arrestin2 actively modulates the biased property of GPCR signaling, which contributes to the pathophysiology of HHcy-related CVDs and provides insight into the selection of agonists for the treatment of diseases under HHcy conditions.

1.
Li
T
,
Yu
B
,
Liu
Z
, et al
.
Homocysteine directly interacts and activates the angiotensin II type I receptor to aggravate vascular injury
.
Nat Commun
.
2018
;
9
(
1
):
11
.
2.
Clarke
R
,
Daly
L
,
Robinson
K
, et al
.
Hyperhomocysteinemia: an independent risk factor for vascular disease
.
N Engl J Med
.
1991
;
324
(
17
):
1149
-
1155
.
3.
Antoniades
C
,
Antonopoulos
AS
,
Tousoulis
D
,
Marinou
K
,
Stefanadis
C
.
Homocysteine and coronary atherosclerosis: from folate fortification to the recent clinical trials
.
Eur Heart J
.
2009
;
30
(
1
):
6
-
15
.
4.
Liu
Z
,
Luo
H
,
Zhang
L
, et al
.
Hyperhomocysteinemia exaggerates adventitial inflammation and angiotensin II-induced abdominal aortic aneurysm in mice
.
Circ Res
.
2012
;
111
(
10
):
1261
-
1273
.
5.
Han
L
,
Miao
Y
,
Zhao
Y
, et al
.
The binding of autotaxin to integrins mediates hyperhomocysteinemia-potentiated platelet activation and thrombosis
.
Blood Adv
.
2022
;
6
(
1
):
46
-
61
.
6.
Hankey
GJ
,
Eikelboom
JW
.
Homocysteine and vascular disease
.
Lancet
.
1999
;
354
(
9176
):
407
-
413
.
7.
Coppola
A
,
Davi
G
,
De Stefano
V
,
Mancini
FP
,
Cerbone
AM
,
Di Minno
G
.
Homocysteine, coagulation, platelet function, and thrombosis
.
Semin Thromb Hemost
.
2000
;
26
(
3
):
243
-
254
.
8.
Riba
R
,
Nicolaou
A
,
Troxler
M
,
Homer-Vaniasinkam
S
,
Naseem
KM
.
Altered platelet reactivity in peripheral vascular disease complicated with elevated plasma homocysteine levels
.
Atherosclerosis
.
2004
;
175
(
1
):
69
-
75
.
9.
Verdoia
M
,
Rolla
R
,
Negro
F
, et al
.
Homocysteine levels and platelet reactivity in coronary artery disease patients treated with ticagrelor
.
Nutr Metab Cardiovasc Dis
.
2020
;
30
(
2
):
292
-
299
.
10.
Jan
M
,
Cueto
R
,
Jiang
X
, et al
.
Molecular processes mediating hyperhomocysteinemia-induced metabolic reprogramming, redox regulation and growth inhibition in endothelial cells
.
Redox Biol
.
2021
;
45
:
102018
.
11.
Yan
Y
,
Wu
X
,
Wang
P
, et al
.
Homocysteine promotes hepatic steatosis by activating the adipocyte lipolysis in a HIF1α-ERO1α-dependent oxidative stress manner
.
Redox Biol
.
2020
;
37
:
101742
.
12.
Xi
H
,
Zhang
Y
,
Xu
Y
, et al
.
Caspase-1 inflammasome activation mediates homocysteine-induced pyrop-apoptosis in endothelial cells
.
Circ Res
.
2016
;
118
(
10
):
1525
-
1539
.
13.
Jakubowski
H
.
Homocysteine modification in protein structure/function and human disease
.
Physiol Rev
.
2019
;
99
(
1
):
555
-
604
.
14.
Drake
MT
,
Shenoy
SK
,
Lefkowitz
RJ
.
Trafficking of G protein-coupled receptors
.
Circ Res
.
2006
;
99
(
6
):
570
-
582
.
15.
Estevez
B
,
Du
X
.
New concepts and mechanisms of platelet activation signaling
.
Physiology
.
2017
;
32
(
2
):
162
-
177
.
16.
Sriram
K
,
Insel
PA
.
Inflammation and thrombosis in COVID-19 pathophysiology: proteinase-activated and purinergic receptors as drivers and candidate therapeutic targets
.
Physiol Rev
.
2021
;
101
(
2
):
545
-
567
.
17.
Zhang
Q
,
Bai
B
,
Mei
X
, et al
.
Elevated H3K79 homocysteinylation causes abnormal gene expression during neural development and subsequent neural tube defects
.
Nat Commun
.
2018
;
9
(
1
):
3436
.
18.
Wang
D
,
Zhao
R
,
Qu
YY
, et al
.
Colonic lysine homocysteinylation induced by high-fat diet suppresses DNA damage repair
.
Cell Rep
.
2018
;
25
(
2
):
398
-
412.e6
.
19.
Mei
X
,
Qi
D
,
Zhang
T
, et al
.
Inhibiting MARSs reduces hyperhomocysteinemia-associated neural tube and congenital heart defects
.
EMBO Mol Med
.
2020
;
12
(
3
):
e9469
.
20.
Bossenmeyer-Pourie
C
,
Smith
AD
,
Lehmann
S
, et al
.
N-homocysteinylation of tau and MAP1 is increased in autopsy specimens of Alzheimer's disease and vascular dementia
.
J Pathol
.
2019
;
248
(
3
):
291
-
303
.
21.
McCully
KS
.
Homocysteine metabolism, atherosclerosis, and diseases of aging
.
Compr Physiol
.
2015
;
6
(
1
):
471
-
505
.
22.
Ross
EM
.
Protein modification. Palmitoylation in G-protein signaling pathways
.
Curr Biol
.
1995
;
5
(
2
):
107
-
109
.
23.
Shenoy
SK
,
McDonald
PH
,
Kohout
TA
,
Lefkowitz
RJ
.
Regulation of receptor fate by ubiquitination of activated beta 2-adrenergic receptor and beta-arrestin
.
Science
.
2001
;
294
(
5545
):
1307
-
1313
.
24.
Qanbar
R
,
Bouvier
M
.
Role of palmitoylation/depalmitoylation reactions in G-protein-coupled receptor function
.
Pharmacol Ther
.
2003
;
97
(
1
):
1
-
33
.
25.
Whalen
EJ
,
Foster
MW
,
Matsumoto
A
, et al
.
Regulation of beta-adrenergic receptor signaling by S-nitrosylation of G-protein-coupled receptor kinase 2
.
Cell
.
2007
;
129
(
3
):
511
-
522
.
26.
Kursawe
R
,
Paschke
R
.
Modulation of TSHR signaling by posttranslational modifications
.
Trends Endocrinol Metab
.
2007
;
18
(
5
):
199
-
207
.
27.
Sethi
S
,
Adams
W
,
Pollock
J
,
Witt-Enderby
PA
.
C-terminal domains within human MT1 and MT2 melatonin receptors are involved in internalization processes
.
J Pineal Res
.
2008
;
45
(
2
):
212
-
218
.
28.
Ozawa
K
,
Whalen
EJ
,
Nelson
CD
, et al
.
S-nitrosylation of beta-arrestin regulates beta-adrenergic receptor trafficking
.
Mol Cell
.
2008
;
31
(
3
):
395
-
405
.
29.
Wyatt
D
,
Malik
R
,
Vesecky
AC
,
Marchese
A
.
Small ubiquitin-like modifier modification of arrestin-3 regulates receptor trafficking
.
J Biol Chem
.
2011
;
286
(
5
):
3884
-
3893
.
30.
Nagi
K
,
Kaur
S
,
Bai
Y
,
Shenoy
SK
.
In-frame fusion of SUMO1 enhances betaarrestin2's association with activated GPCRs as well as with nuclear pore complexes
.
Cell Signal
.
2020
;
75
:
109759
.
31.
Kang
H
,
Yang
HS
,
Ki
AY
, et al
.
Conformational dynamics and functional implications of phosphorylated beta-arrestins
.
Structure
.
2020
;
28
(
3
):
314
-
323.e313
.
32.
Lemos Duarte
M
,
Devi
LA
.
Post-translational modifications of opioid receptors
.
Trends Neurosci
.
2020
;
43
(
6
):
417
-
432
.
33.
Patwardhan
A
,
Cheng
N
,
Trejo
J
.
Post-translational modifications of G protein-coupled receptors control cellular signaling dynamics in space and time
.
Pharmacol Rev
.
2021
;
73
(
1
):
120
-
151
.
34.
Ping
YQ
,
Mao
C
,
Xiao
P
, et al
.
Structures of the glucocorticoid-bound adhesion receptor GPR97-Go complex
.
Nature
.
2021
;
589
(
7843
):
620
-
626
.
35.
Chao
ML
,
Luo
S
,
Zhang
C
, et al
.
S-nitrosylation-mediated coupling of G-protein alpha-2 with CXCR5 induces Hippo/YAP-dependent diabetes-accelerated atherosclerosis
.
Nat Commun
.
2021
;
12
(
1
):
4452
.
36.
Hayashi
H
,
Hess
DT
,
Zhang
R
, et al
.
S-nitrosylation of β-arrestins biases receptor signaling and confers ligand independence
.
Mol Cell
.
2018
;
70
(
3
):
473
-
487.e6
.
37.
He
QT
,
Xiao
P
,
Huang
SM
, et al
.
Structural studies of phosphorylation-dependent interactions between the V2R receptor and arrestin-2
.
Nat Commun
.
2021
;
12
(
1
):
2396
.
38.
van der Meijden
PEJ
,
Heemskerk
JWM
.
Platelet biology and functions: new concepts and clinical perspectives
.
Nat Rev Cardiol
.
2019
;
16
(
3
):
166
-
179
.
39.
Yeung
J
,
Li
W
,
Holinstat
M
.
Platelet signaling and disease: targeted therapy for thrombosis and other related diseases
.
Pharmacol Rev
.
2018
;
70
(
3
):
526
-
548
.
40.
Rajkumar
V
,
Ragatzki
P
,
Sima
A
,
Levy
J
.
Enhanced platelet aggregation, high homocysteine level, and microvascular disease in diabetic muscle infarctions: implications for therapy
.
Endocrine
.
1999
;
11
(
1
):
57
-
60
.
41.
Plump
AS
,
Smith
JD
,
Hayek
T
, et al
.
Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells
.
Cell
.
1992
;
71
(
2
):
343
-
353
.
42.
Hu
QX
,
Dong
JH
,
Du
HB
, et al
.
Constitutive Galphai coupling activity of very large G protein-coupled receptor 1 (VLGR1) and its regulation by PDZD7 protein
.
J Biol Chem
.
2014
;
289
(
35
):
24215
-
24225
.
43.
Lin
YC
,
Ko
YC
,
Hung
SC
, et al
.
Selective inhibition of PAR4 (protease-activated receptor 4)-mediated platelet activation by a synthetic nonanticoagulant heparin analog
.
Arterioscler Thromb Vasc Biol
.
2019
;
39
(
4
):
694
-
703
.
44.
Inoue
A
,
Ishiguro
J
,
Kitamura
H
, et al
.
TGFα shedding assay: an accurate and versatile method for detecting GPCR activation
.
Nat Methods
.
2012
;
9
(
10
):
1021
-
1029
.
45.
Staus
DP
,
Hu
H
,
Robertson
MJ
, et al
.
Structure of the M2 muscarinic receptor-beta-arrestin complex in a lipid nanodisc
.
Nature
.
2020
;
579
(
7798
):
297
-
302
.
46.
Yang
F
,
Xiao
P
,
Qu
CX
, et al
.
Allosteric mechanisms underlie GPCR signaling to SH3-domain proteins through arrestin
.
Nat Chem Biol
.
2018
;
14
(
9
):
876
-
886
.
47.
Yang
F
,
Yu
X
,
Liu
C
, et al
.
Phospho-selective mechanisms of arrestin conformations and functions revealed by unnatural amino acid incorporation and (19)F-NMR
.
Nat Commun
.
2015
;
6
:
8202
.
48.
Smith
JS
,
Lefkowitz
RJ
,
Rajagopal
S
.
Biased signalling: from simple switches to allosteric microprocessors
.
Nat Rev Drug Discov
.
2018
;
17
(
4
):
243
-
260
.
49.
Cahill
TJ
,
Thomsen
AR
,
Tarrasch
JT
, et al
.
Distinct conformations of GPCR-beta-arrestin complexes mediate desensitization, signaling, and endocytosis
.
Proc Natl Acad Sci U S A
.
2017
;
114
(
10
):
2562
-
2567
.
50.
Nguyen
AH
,
Thomsen
ARB
,
Cahill
TJ
, et al
.
Structure of an endosomal signaling GPCR-G protein-beta-arrestin megacomplex
.
Nat Struct Mol Biol
.
2019
;
26
(
12
):
1123
-
1131
.
51.
Liu
CH
,
Gong
Z
,
Liang
ZL
, et al
.
Arrestin-biased AT1R agonism induces acute catecholamine secretion through TRPC3 coupling
.
Nat Commun
.
2017
;
8
:
14335
.
52.
Dong
JH
,
Wang
YJ
,
Cui
M
, et al
.
Adaptive activation of a stress response pathway improves learning and memory through Gs and beta-arrestin-1-regulated lactate metabolism
.
Biol Psychiatry
.
2017
;
81
(
8
):
654
-
670
.
53.
Wang
HM
,
Dong
JH
,
Li
Q
, et al
.
A stress response pathway in mice upregulates somatostatin level and transcription in pancreatic delta cells through Gs and beta-arrestin 1
.
Diabetologia
.
2014
;
57
(
9
):
1899
-
1910
.
54.
Yang
Z
,
Yang
F
,
Zhang
D
, et al
.
Phosphorylation of G protein-coupled receptors: from the barcode hypothesis to the flute model
.
Mol Pharmacol
.
2017
;
92
(
3
):
201
-
210
.
55.
Wingler
LM
,
Lefkowitz
RJ
.
Conformational basis of G protein-coupled receptor signaling versatility
.
Trends Cell Biol
.
2020
;
30
(
9
):
736
-
747
.
56.
Fuentes
N
,
McCullough
M
,
Panettieri
RA
,
Druey
KM
.
RGS proteins, GRKs, and beta-arrestins modulate G protein-mediated signaling pathways in asthma
.
Pharmacol Ther
.
2021
;
223
:
107818
.
57.
Chen
N
,
Liu
J
,
Qiao
Z
, et al
.
Chemical proteomic profiling of protein N-homocysteinylation with a thioester probe
.
Chem Sci
.
2018
;
9
(
10
):
2826
-
2830
.
58.
Shukla
AK
,
Manglik
A
,
Kruse
AC
, et al
.
Structure of active beta-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide
.
Nature
.
2013
;
497
(
7447
):
137
-
141
.
59.
Nobles
KN
,
Xiao
K
,
Ahn
S
, et al
.
Distinct phosphorylation sites on the beta(2)-adrenergic receptor establish a barcode that encodes differential functions of beta-arrestin
.
Sci Signal
.
2011
;
4
(
185
):
ra51
.
60.
Nuber
S
,
Zabel
U
,
Lorenz
K
, et al
.
Beta-arrestin biosensors reveal a rapid, receptor-dependent activation/deactivation cycle
.
Nature
.
2016
;
531
(
7596
):
661
-
664
.
61.
Min
K
,
Yoon
HJ
,
Park
JY
, et al
.
Crystal structure of beta-arrestin 2 in complex with CXCR7 phosphopeptide
.
Structure
.
2020
;
28
(
9
):
1014
-
1023.e1014
.
62.
Ghosh
E
,
Dwivedi
H
,
Baidya
M
, et al
.
Conformational sensors and domain swapping reveal structural and functional differences between beta-arrestin isoforms
.
Cell Rep
.
2019
;
28
(
13
):
3287
-
3299.e3286
.
63.
Hajjar
KA
.
Homocysteine: a sulph'rous fire
.
J Clin Investig
.
2001
;
107
(
6
):
663
-
664
.
64.
Akalin
A
,
Alatas
O
,
Colak
O
.
Relation of plasma homocysteine levels to atherosclerotic vascular disease and inflammation markers in type 2 diabetic patients
.
Eur J Endocrinol
.
2008
;
158
(
1
):
47
-
52
.
65.
Chernyavskiy
I
,
Veeranki
S
,
Sen
U
,
Tyagi
SC
.
Atherogenesis: hyperhomocysteinemia interactions with LDL, macrophage function, paraoxonase 1, and exercise
.
Ann N Y Acad Sci
.
2016
;
1363
(
1
):
138
-
154
.
66.
Sun
W
,
Pang
Y
,
Liu
Z
, et al
.
Macrophage inflammasome mediates hyperhomocysteinemia-aggravated abdominal aortic aneurysm
.
J Mol Cell Cardiol
.
2015
;
81
:
96
-
106
.
67.
Gao
S
,
Wang
L
,
Liu
W
,
Wu
Y
,
Yuan
Z
.
The synergistic effect of homocysteine and lipopolysaccharide on the differentiation and conversion of raw264.7 macrophages
.
J Inflamm
.
2014
;
11
:
13
.
68.
Zhang
SY
,
Dong
YQ
,
Wang
P
, et al
.
Adipocyte-derived lysophosphatidylcholine activates adipocyte and adipose tissue macrophage nod-like receptor protein 3 inflammasomes mediating homocysteine-induced insulin resistance
.
EBioMedicine
.
2018
;
31
:
202
-
216
.
69.
Oh
DY
,
Talukdar
S
,
Bae
EJ
, et al
.
GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects
.
Cell
.
2010
;
142
(
5
):
687
-
698
.
70.
Pols
TW
,
Nomura
M
,
Harach
T
, et al
.
TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading
.
Cell Metab
.
2011
;
14
(
6
):
747
-
757
.
71.
Yan
Y
,
Jiang
W
,
Spinetti
T
, et al
.
Omega-3 fatty acids prevent inflammation and metabolic disorder through inhibition of NLRP3 inflammasome activation
.
Immunity
.
2013
;
38
(
6
):
1154
-
1163
.
72.
Guo
C
,
Xie
S
,
Chi
Z
, et al
.
Bile acids control inflammation and metabolic disorder through inhibition of NLRP3 inflammasome
.
Immunity
.
2016
;
45
(
4
):
944
.
73.
Yang
F
,
Mao
C
,
Guo
L
, et al
.
Structural basis of GPBAR activation and bile acid recognition
.
Nature
.
2020
;
587
(
7834
):
499
-
504
.
74.
Hu
X
,
Yan
J
,
Huang
L
, et al
.
INT-777 attenuates NLRP3-ASC inflammasome-mediated neuroinflammation via TGR5/cAMP/PKA signaling pathway after subarachnoid hemorrhage in rats
.
Brain Behav Immun
.
2021
;
91
:
587
-
600
.
75.
Son
P
,
Lewis
L
. Hyperhomocysteinemia. 1st ed.
StatPearls
.
2022
.
76.
Ganguly
P
,
Alam
SF
.
Role of homocysteine in the development of cardiovascular disease
.
Nutr J
.
2015
;
14
:
6
.
77.
Borowczyk
K
,
Piechocka
J
,
Głowacki
R
, et al
.
Urinary excretion of homocysteine thiolactone and the risk of acute myocardial infarction in coronary artery disease patients: the WENBIT trial
.
J Intern Med
.
2019
;
285
(
2
):
232
-
244
.
78.
Olas
B
,
Kedzierska
M
,
Wachowicz
B
.
Comparative studies on homocysteine and its metabolite-homocysteine thiolactone action in blood platelets in vitro
.
Platelets
.
2008
;
19
(
7
):
520
-
527
.
79.
Tabas
I
,
Bornfeldt
KE
.
Macrophage phenotype and function in different stages of atherosclerosis
.
Circ Res
.
2016
;
118
(
4
):
653
-
667
.
80.
Soehnlein
O
,
Drechsler
M
,
Döring
Y
, et al
.
Distinct functions of chemokine receptor axes in the atherogenic mobilization and recruitment of classical monocytes
.
EMBO Mol Med
.
2013
;
5
(
3
):
471
-
481
.
81.
Erbel
C
,
Akhavanpoor
M
,
Okuyucu
D
, et al
.
IL-17A influences essential functions of the monocyte/macrophage lineage and is involved in advanced murine and human atherosclerosis
.
J Immunol
.
2014
;
193
(
9
):
4344
-
4355
.
82.
Missiou
A
,
Köstlin
N
,
Varo
N
, et al
.
Tumor necrosis factor receptor-associated factor 1 (TRAF1) deficiency attenuates atherosclerosis in mice by impairing monocyte recruitment to the vessel wall
.
Circulation
.
2010
;
121
(
18
):
2033
-
2044
.
83.
Wang
JL
,
Dou
XD
,
Cheng
J
, et al
.
Functional screening and rational design of compounds targeting GPR132 to treat diabetes
.
Nat Metab
.
2023
;
5
(
10
):
1726
-
1746
.
84.
Drechsler
M
,
de Jong
R
,
Rossaint
J
, et al
.
Annexin A1 counteracts chemokine-induced arterial myeloid cell recruitment
.
Circ Res
.
2015
;
116
(
5
):
827
-
835
.
85.
Wadman
M
.
'Biased' opioids could yield safer pain relief
.
Science
.
2017
;
358
(
6365
):
847
-
848
.
86.
Bohn
LM
,
Lefkowitz
RJ
,
Gainetdinov
RR
,
Peppel
K
,
Caron
MG
,
Lin
FT
.
Enhanced morphine analgesia in mice lacking beta-arrestin 2
.
Science
.
1999
;
286
(
5449
):
2495
-
2498
.
87.
DeWire
SM
,
Yamashita
DS
,
Rominger
DH
, et al
.
A G protein-biased ligand at the mu-opioid receptor is potently analgesic with reduced gastrointestinal and respiratory dysfunction compared with morphine
.
J Pharmacol Exp Ther
.
2013
;
344
(
3
):
708
-
717
.
88.
Soergel
DG
,
Subach
RA
,
Burnham
N
, et al
.
Biased agonism of the mu-opioid receptor by TRV130 increases analgesia and reduces on-target adverse effects versus morphine: A randomized, double-blind, placebo-controlled, crossover study in healthy volunteers
.
Pain
.
2014
;
155
(
9
):
1829
-
1835
.
89.
Manglik
A
,
Lin
H
,
Aryal
DK
, et al
.
Structure-based discovery of opioid analgesics with reduced side effects
.
Nature
.
2016
;
537
(
7619
):
185
-
190
.
90.
Glowacki
R
,
Jakubowski
H
.
Cross-talk between Cys34 and lysine residues in human serum albumin revealed by N-homocysteinylation
.
J Biol Chem
.
2004
;
279
(
12
):
10864
-
10871
.
You do not currently have access to this content.
Sign in via your Institution