• Serum-opsonized zymosan induces a rapid phosphorylation/dephosphorylation of p47phox on Ser304, Ser315, Ser320, and Ser328.

  • The membrane receptors FcγR and CR3 induce the phosphorylation of p47phox involving Src/Syk, PI3K, PLC, PLD, Ca2+, and PKCβ2.

Abstract

Neutrophils play a key role in innate immunity by killing microbes through phagocytosis and superoxide anion production by the phagocyte reduced NAD phosphate (NADPH) oxidase. The signaling pathways regulating NADPH oxidase activation in neutrophils have been extensively studied using soluble agonists, but are less understood during phagocytosis, a fundamental function of neutrophils. The aim of this study was to investigate the phosphorylation of the cytosolic NADPH oxidase protein p47phox in human neutrophils stimulated by serum-opsonized zymosan (OZ), which induces phagocytosis, using antibodies against phosphorylated sites. The results show that OZ induced rapid phosphorylation of p47phox on Ser304, Ser315, Ser320, and Ser328, followed by rapid dephosphorylation. Interestingly, despite the transient nature of p47phox phosphorylation, OZ-induced NADPH oxidase activity was sustained for a longer period in cells and in isolated membranes. OZ-induced p47phox phosphorylation was concentration dependent and preceded particle ingestion. Immunoglobulin G (IgG)- and complement protein fragment 3bi (C3bi)-opsonized zymosan similarly induced rapid phosphorylation and dephosphorylation of p47phox on Ser304 to Ser328, suggesting that IgG Fc-gamma receptors (FcγR) and complement receptor 3 (CR3) are involved in this process. Inhibitors of sarcome (Src) tyrosine kinase, spleen tyrosine kinase (Syk), phosphoinositide 3-kinase (PI3K), phospholipase C (PLC), phospholipase D (PLD), Ca2+, and protein kinase C beta 2 (PKCβ2) inhibited OZ-induced phosphorylation of p47phox. These results suggest that (1) OZ-induced p47phox phosphorylation on Ser304 to Ser328 is required for the initiation of NADPH oxidase activation but not for its maintenance during phagocytosis, (2 )the membrane receptors FcγR and CR3 mediate this phosphorylation, and (3) Src and Syk tyrosine kinases, PI3K, PLD, Ca2+, and PKCβ2 control the phosphorylation of p47phox during phagocytosis.

1.
Nauseef
WM
,
Borregaard
N
.
Neutrophils at work
.
Nat Immunol
.
2014
;
15
(
7
):
602
-
611
.
2.
Nathan
C
.
Neutrophils and immunity: challenges and opportunities
.
Nat Rev Immunol
.
2006
;
6
(
3
):
173
-
182
.
3.
Kobayashi
SD
,
Voyich
JM
,
Burlak
C
,
DeLeo
FR
.
Neutrophils in the innate immune response
.
Arch Immunol Ther Exp
.
2005
;
53
(
6
):
505
-
517
.
4.
Segal
AW
.
How neutrophils kill microbes
.
Annu Rev Immunol
.
2005
;
23
(
1
):
197
-
223
.
5.
Nauseef
WM
.
How human neutrophils kill and degrade microbes: an integrated view
.
Immunol Rev
.
2007
;
219
(
1
):
88
-
102
.
6.
Belambri
SA
,
Rolas
L
,
Raad
H
,
Hurtado-Nedelec
M
,
Dang
PMC
,
El-Benna
J
.
NADPH oxidase activation in neutrophils: role of the phosphorylation of its subunits
.
Eur J Clin Invest
.
2018
;
48
(
suppl 2
):
e12951
.
7.
Nauseef
WM
.
The phagocyte NOX2 NADPH oxidase in microbial killing and cell signaling
.
Curr Opin Immunol
.
2019
;
60
:
130
-
140
.
8.
Kannengiesser
C
,
Gérard
B
,
El Benna
J
, et al
.
Molecular epidemiology of chronic granulomatous disease in a series of 80 kindreds: identification of 31 novel mutations
.
Hum Mutat
.
2008
;
29
(
9
):
E132
-
E149
.
9.
Rosenzweig
SD
.
Inflammatory manifestations in chronic granulomatous disease (CGD)
.
J Clin Immunol
.
2008
;
28
(
suppl 1
):
67
-
72
.
10.
Charlton
A
,
Garzarella
J
,
Jandeleit-Dahm
KAM
,
Jha
JC
.
Oxidative stress and inflammation in renal and cardiovascular complications of diabetes
.
Biology
.
2020
;
10
(
1
):
18
.
11.
El-Benna
J
,
Hurtado-Nedelec
M
,
Marzaioli
V
,
Marie
JC
,
Gougerot-Pocidalo
MA
,
Dang
PM
.
Priming of the neutrophil respiratory burst: role in host defense and inflammation
.
Immunol Rev
.
2016
;
273
(
1
):
180
-
193
.
12.
El-Benna
J
,
Dang
PMC
,
Gougerot-Pocidalo
MA
,
Marie
JC
,
Braut-Boucher
F
.
p47phox, the phagocyte NADPH oxidase/NOX2 organizer: structure, phosphorylation and implication in diseases
.
Exp Mol Med
.
2009
;
41
(
4
):
217
-
225
.
13.
El-Benna
J
,
Dang
PMC
,
Gougerot-Pocidalo
MA
.
Priming of the neutrophil NADPH oxidase activation: role of p47phox phosphorylation and NOX2 mobilization to the plasma membrane
.
Semin Immunopathol
.
2008
;
30
(
3
):
279
-
289
.
14.
Belambri
SA
,
Marzaioli
V
,
Hurtado-Nedelec
M
, et al
.
Impaired p47phox phosphorylation in neutrophils from patients with p67phox-deficient chronic granulomatous disease
.
Blood
.
2022
;
139
(
16
):
2512
-
2522
.
15.
Dang
PM
,
Fontayne
A
,
Hakim
J
,
El Benna
J
,
Périanin
A
.
Protein kinase C zeta phosphorylates a subset of selective sites of the NADPH oxidase component p47phox and participates in formyl peptide-mediated neutrophil respiratory burst
.
J Immunol
.
2001
;
166
(
2
):
1206
-
1213
.
16.
Dewas
C
,
Fay
M
,
Gougerot-Pocidalo
MA
,
El-Benna
J
.
The mitogen-activated protein kinase extracellular signal-regulated kinase 1/2 pathway is involved in formyl-methionyl-leucyl-phenylalanine-induced p47phox phosphorylation in human neutrophils
.
J Immunol
.
2000
;
165
(
9
):
5238
-
5244
.
17.
el Benna
J
,
Faust
LP
,
Babior
BM
.
The phosphorylation of the respiratory burst oxidase component p47phox during neutrophil activation. Phosphorylation of sites recognized by protein kinase C and by proline-directed kinases
.
J Biol Chem
.
1994
;
269
(
38
):
23431
-
23436
.
18.
Ding
J
,
Badwey
JA
,
Erickson
RW
,
Balazovich
KJ
,
Curnutte
JT
.
Protein kinases potentially capable of catalyzing the phosphorylation of p47-phox in normal neutrophils and neutrophils of patients with chronic granulomatous disease
.
Blood
.
1993
;
82
(
3
):
940
-
947
.
19.
Sobota
A
,
Strzelecka-Kiliszek
A
,
Gładkowska
E
,
Yoshida
K
,
Mrozińska
K
,
Kwiatkowska
K
.
Binding of IgG-opsonized particles to FcγR is an active stage of phagocytosis that involves receptor clustering and phosphorylation
.
J Immunol
.
2005
;
175
(
7
):
4450
-
4457
.
20.
Joshi
T
,
Butchar
J
,
Tridandapani
S
.
Fcγ receptor signaling in phagocytes
.
Int J Hematol
.
2006
;
84
(
3
):
210
-
216
.
21.
Moalli
F
,
Doni
A
,
Deban
L
, et al
.
Role of complement and Fcγ receptors in the protective activity of the long pentraxin PTX3 against Aspergillus fumigatus
.
Blood
.
2010
;
116
(
24
):
5170
-
5180
.
22.
Fällman
M
,
Andersson
R
,
Andersson
T
.
Signaling properties of CR3 (CD11b/CD18) and CR1 (CD35) in relation to phagocytosis of complement-opsonized particles
.
J Immunol
.
1993
;
151
(
1
):
330
-
338
.
23.
Boussetta
T
,
Gougerot-Pocidalo
MA
,
Hayem
G
, et al
.
The prolyl isomerase Pin1 acts as a novel molecular switch for TNF-alpha-induced priming of the NADPH oxidase in human neutrophils
.
Blood
.
2010
;
116
(
26
):
5795
-
5802
.
24.
Dang
PMC
,
Stensballe
A
,
Boussetta
T
, et al
.
A specific p47phox-serine phosphorylated by convergent MAPKs mediates neutrophil NADPH oxidase priming at inflammatory sites
.
J Clin Invest
.
2006
;
116
(
7
):
2033
-
2043
.
25.
Belambri
SA
,
Dang
PM-C
,
El-Benna
J
.
Evaluation of p47phox phosphorylation in human neutrophils using phospho-specific antibodies
.
Methods Mol. Biol
.
2014
;
1124
:
427
-
433
.
26.
El-Benna
J
,
Dang
PM
.
Analysis of protein phosphorylation in human neutrophils
.
Methods Mol Biol
.
2007
;
412
:
85
-
96
.
27.
Bedouhène
S
,
Moulti-Mati
F
,
Hurtado-Nedelec
M
,
Dang
PMC
,
El-Benna
J
.
Luminol-amplified chemiluminescence detects mainly superoxide anion produced by human neutrophils
.
Am J Blood Res
.
2017
;
7
(
4
):
41
-
48
.
28.
Sergeant
S
,
McPhail
LC
.
Opsonized zymosan stimulates the redistribution of protein kinase C isoforms in human neutrophils
.
J Immunol
.
1997
;
159
(
6
):
2877
-
2885
.
29.
Laemmli
UK
.
Cleavage of structural proteins during the assembly of the head of bacteriophage T4
.
Nature
.
1970
;
227
(
5259
):
680
-
685
.
30.
Towbin
H
,
Staehelin
T
,
Gordon
J
.
Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications
.
Proc Natl Acad Sci
.
1979
;
76
(
9
):
4350
-
4354
.
31.
Ben-Khemis
M
,
Liu
D
,
Pintard
C
, et al
.
TNFα counteracts interleukin-10 anti-inflammatory pathway through the NOX2-Lyn-SHP-1 axis in human monocytes
.
Redox Biol
.
2023
;
67
:
102898
.
32.
Fleit
HB
,
Lane
BP
.
Fcγ receptor mediated phagocytosis by human neutrophil cytoplasts
.
Inflammation
.
1999
;
23
(
3
):
253
-
262
.
33.
Hawkins
D
.
Neutrophilic leukocytes in immunologic reactions in vitro: effect of cytochalasin B
.
J Immunol
.
1973
;
110
(
1
):
294
-
296
.
34.
Dahlgren
C
,
Karlsson
A
.
Respiratory burst in human neutrophils
.
J Immunol Methods
.
1999
;
232
(
1-2
):
3
-
14
.
35.
Bredius
RG
,
Fijen
CA
,
De Haas
M
, et al
.
Role of neutrophil Fc gamma RIIa (CD32) and Fc gamma RIIIb (CD16) polymorphic forms in phagocytosis of human IgG1- and IgG3-opsonized bacteria and erythrocytes
.
Immunology
.
1994
;
83
(
4
):
624
-
630
.
36.
Lee
JY
,
Kim
SH
,
Lee
SH
,
Kim
HR
,
Min
HK
.
Effect of Janus kinase inhibitors on T cell responses to herpes zoster in rheumatoid arthritis patients
.
Clin Exp Rheumatol
.
2023
;
41
(
5
):
1077
-
1087
.
37.
Dimitrova
P
,
Ivanovska
N
.
Tyrphostin AG-490 inhibited the acute phase of zymosan-induced inflammation
.
Int Immunopharmacol
.
2008
;
8
(
11
):
1567
-
1577
.
38.
Bartscht
T
,
Lehnert
H
,
Gieseler
F
,
Ungefroren
H
.
The Src family kinase inhibitors PP2 and PP1 effectively block TGF-beta1-induced cell migration and invasion in both established and primary carcinoma cells
.
Cancer Chemother Pharmacol
.
2012
;
70
(
2
):
221
-
230
.
39.
Chung
YH
,
Kim
HY
,
Yoon
BR
,
Kang
YJ
,
Lee
WW
.
Suppression of Syk activation by resveratrol inhibits MSU crystal-induced inflammation in human monocytes
.
J Mol Med (Berl)
.
2019
;
97
(
3
):
369
-
383
.
40.
Matsubara
S
,
Li
G
,
Takeda
K
, et al
.
Inhibition of spleen tyrosine kinase prevents mast cell activation and airway hyperresponsiveness
.
Am J Respir Crit Care Med
.
2006
;
173
(
1
):
56
-
63
.
41.
Zen
K
,
Liu
Y
.
Role of different protein tyrosine kinases in fMLP-induced neutrophil transmigration
.
Immunobiology
.
2008
;
213
(
1
):
13
-
23
.
42.
Kawano
T
,
Inokuchi
J
,
Eto
M
,
Murata
M
,
Kang
JH
.
Activators and inhibitors of protein kinase C (PKC): their applications in clinical trials
.
Pharmaceutics
.
2021
;
13
(
11
):
1748
.
43.
Saiepour
D
,
Sehlin
J
,
Oldenborg
PA
.
Hyperglycemia-induced protein kinase C activation inhibits phagocytosis of C3b- and immunoglobulin g-opsonized yeast particles in normal human neutrophils
.
Exp Diabesity Res
.
2003
;
4
(
2
):
125
-
132
.
44.
Shen
GX
.
Selective protein kinase C inhibitors and their applications
.
Curr Drug Targets Cardiovasc Haematol Disord
.
2003
;
3
(
4
):
301
-
307
.
45.
Belambri
SA
,
Hurtado-Nedelec
M
,
Senator
A
, et al
.
Phosphorylation of p47phox is required for receptor- mediated NADPH oxidase/NOX2 activation in Epstein-Barr virus-transformed human B lymphocytes
.
Am J Blood Res
.
2012
;
2
(
3
):
187
-
193
.
46.
Faust
LR
,
el Benna
J
,
Babior
BM
,
Chanock
SJ
.
The phosphorylation targets of p47phox, a subunit of the respiratory burst oxidase. Functions of the individual target serines as evaluated by site-directed mutagenesis
.
J Clin Invest
.
1995
;
96
(
3
):
1499
-
1505
.
47.
Faure
MC
,
Sulpice
J
,
Delattre
M
, et al
.
The recruitment of p47phox and Rac2G12V at the phagosome is transient and phosphatidylserine dependent
.
Biol Cell
.
2013
;
105
(
11
):
501
-
518
.
48.
Allen
LAH
,
DeLeo
FR
,
Gallois
A
,
Toyoshima
S
,
Suzuki
K
,
Nauseef
WM
.
Transient association of the nicotinamide adenine dinucleotide phosphate oxidase subunits p47phox and p67phox with phagosomes in neutrophils from patients with X-linked chronic granulomatous disease
.
Blood
.
1999
;
93
(
10
):
3521
-
3530
.
49.
DeLeo
FR
,
Allen
LAH
,
Apicella
M
,
Nauseef
WM
.
NADPH oxidase activation and assembly during phagocytosis
.
J Immunol
.
1999
;
163
(
12
):
6732
-
6740
.
50.
Fontayne
A
,
Dang
PM
,
Gougerot-Pocidalo
MA
,
El-Benna
J
.
Phosphorylation of p47phox sites by PKC alpha, beta II, delta, and zeta: effect on binding to p22phox and on NADPH oxidase activation
.
Biochemistry
.
2002
;
41
(
24
):
7743
-
7750
.
51.
Dekker
LV
,
Leitges
M
,
Altschuler
G
, et al
.
Protein kinase C-beta contributes to NADPH oxidase activation in neutrophils
.
Biochem J
.
2000
;
347
(
Pt 1
):
285
-
289
.
You do not currently have access to this content.
Sign in via your Institution