• Patients with germ line G6b-B mutations and primary MF with thrombocytopenia share similar clinical phenotypes.

  • MKs from both types of patients have reduced G6B and GATA binding protein 1 levels and increased profibrotic cytokines.

Abstract

The megakaryocytic (MK)-specific immunoreceptor G6b-B plays an essential role in MK development. Because germ line loss-of-function mutations of G6b-B in humans and its deletion in mouse models lead to thrombocytopenia and a myelofibrosis-like clinical phenotype (MF-MPIG6B), we explored the role of G6b-B in patients with myelofibrosis (MF) due to a myeloproliferative neoplasm (MPN) with thrombocytopenia (MPN-MF-T). We demonstrated that MKs generated from mononuclear cells (MNCs) from a patient with MF-MPIG6B as well as patients with MPN-MF-T failed to express GATA binding protein 1 and G6B and possessed a protein pattern expression characteristic of MKs primed for inflammation rather than platelet production. MNCs from patients with MPN-MF-T also generated fewer MK-biased hematopoietic stem cells and greater numbers of small cytoplasmic immature MKs (CD41+CD42G6B) as compared with MNCs from patients with nonthrombocytopenic MPN-MF (MPN-MF-NT). Plasma levels of transforming growth factor β1 (TGFβ1) and chitinase-3-like protein (CHI3L1) also known as YKL-40, which were shown to arrest normal MK maturation, were elevated in the patients with MF-MPIG6B. Although TGFβ1 plasma levels were similarly elevated in patients with MPN-MF-T and MPN-MF-NT, tumor necrosis factor α (TNFα) and YKL-40 levels were upregulated to a greater extent in patients with MPN-MF-T than those with MPN-MF-NT. Moreover, we identified a reciprocal positive regulatory loop involving TGFβ1 and YKL-40 in MF MKs. These findings indicate that impaired MK maturation, and reduced G6B expression lead to the predominance of proinflammatory MKs, which produce factors that further arrest MK development in patients with MF-MPIG6B and MPN-MF-T patients. This trial was registered at www.clinicaltrials.gov as #NCT03895112.

1.
Cervantes
F
,
Dupriez
B
,
Pereira
A
, et al
.
New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment
.
Blood
.
2009
;
113
(
13
):
2895
-
2901
.
2.
Mead
AJ
,
Mullally
A
.
Myeloproliferative neoplasm stem cells
.
Blood
.
2017
;
129
(
12
):
1607
-
1616
.
3.
Tefferi
A
.
Primary myelofibrosis: 2021 update on diagnosis, risk-stratification and management
.
Am J Hematol
.
2021
;
96
(
1
):
145
-
162
.
4.
Cunin
P
,
Nigrovic
PA
.
Megakaryocytes as immune cells
.
J Leukoc Biol
.
2019
;
105
(
6
):
1111
-
1121
.
5.
Tefferi
A
,
Lasho
TL
,
Jimma
T
, et al
.
One thousand patients with primary myelofibrosis: the mayo clinic experience
.
Mayo Clin Proc
.
2012
;
87
(
1
):
25
-
33
.
6.
Masarova
L
,
Alhuraiji
A
,
Bose
P
, et al
.
Significance of thrombocytopenia in patients with primary and postessential thrombocythemia/polycythemia vera myelofibrosis
.
Eur J Haematol
.
2018
;
100
(
3
):
257
-
263
.
7.
Guglielmelli
P
,
Rotunno
G
,
Pacilli
A
, et al
.
Prognostic impact of bone marrow fibrosis in primary myelofibrosis. A study of the AGIMM group on 490 patients
.
Am J Hematol
.
2016
;
91
(
9
):
918
-
922
.
8.
Sun
S
,
Jin
C
,
Si
J
, et al
.
Single-cell analysis of ploidy and the transcriptome reveals functional and spatial divergency in murine megakaryopoiesis
.
Blood
.
2021
;
138
(
14
):
1211
-
1224
.
9.
Zhao
M
,
Perry
JM
,
Marshall
H
, et al
.
Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells
.
Nat Med
.
2014
;
20
(
11
):
1321
-
1326
.
10.
Bruns
I
,
Lucas
D
,
Pinho
S
, et al
.
Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion
.
Nat Med
.
2014
;
20
(
11
):
1315
-
1320
.
11.
Heazlewood
SY
,
Ahmad
T
,
Cao
B
, et al
.
High ploidy large cytoplasmic megakaryocytes are hematopoietic stem cells regulators and essential for platelet production
.
Nat Commun
.
2023
;
14
(
1
):
2099
.
12.
Senis
YA
,
Tomlinson
MG
,
García
A
, et al
.
A comprehensive proteomics and genomics analysis reveals novel transmembrane proteins in human platelets and mouse megakaryocytes including G6b-B, a novel immunoreceptor tyrosine-based inhibitory motif protein
.
Mol Cell Proteomics
.
2007
;
6
(
3
):
548
-
564
.
13.
Newland
SA
,
Macaulay
IC
,
Floto
AR
, et al
.
The novel inhibitory receptor G6B is expressed on the surface of platelets and attenuates platelet function in vitro
.
Blood
.
2007
;
109
(
11
):
4806
-
4809
.
14.
Macaulay
IC
,
Tijssen
MR
,
Thijssen-Timmer
DC
, et al
.
Comparative gene expression profiling of in vitro differentiated megakaryocytes and erythroblasts identifies novel activatory and inhibitory platelet membrane proteins
.
Blood
.
2007
;
109
(
8
):
3260
-
3269
.
15.
Coxon
CH
,
Sadler
AJ
,
Huo
J
,
Campbell
RD
.
An investigation of hierarchical protein recruitment to the inhibitory platelet receptor, G6B-b
.
PLoS One
.
2012
;
7
(
11
):
e49543
.
16.
Hofmann
I
,
Geer
MJ
,
Vögtle
T
, et al
.
Congenital macrothrombocytopenia with focal myelofibrosis due to mutations in human G6b-B is rescued in humanized mice
.
Blood
.
2018
;
132
(
13
):
1399
-
1412
.
17.
Wang
Z
,
Tao
F
,
Yang
L
, et al
.
A novel MPIG6B gene mutation in an adolescent girl with congenital thrombocytopenia and myelofibrosis
.
Curr Res Transl Med
.
2022
;
70
(
4
):
103355
.
18.
Batis
H
,
Almugairi
A
,
Almugren
O
, et al
.
Detrimental variants in MPIG6B in two children with myelofibrosis: does immune dysregulation contribute to myelofibrosis?
.
Pediatr Blood Cancer
.
2021
;
68
(
8
):
e29062
.
19.
Chen
H
,
Zheng
J
,
Chen
Z
,
Ma
H
,
Zhang
R
,
Wu
R
.
Case report of a novel MPIG6B gene mutation in a Chinese boy with pancytopenia and splenomegaly
.
Gene
.
2019
;
715
:
143957
.
20.
Melhem
M
,
Abu-Farha
M
,
Antony
D
, et al
.
Novel G6B gene variant causes familial autosomal recessive thrombocytopenia and anemia
.
Eur J Haematol
.
2017
;
98
(
3
):
218
-
227
.
21.
Mazharian
A
,
Wang
YJ
,
Mori
J
, et al
.
Mice lacking the ITIM-containing receptor G6b-B exhibit macrothrombocytopenia and aberrant platelet function
.
Sci Signal
.
2012
;
5
(
248
):
ra78
.
22.
Becker
IC
,
Nagy
Z
,
Manukjan
G
, et al
.
G6b-B regulates an essential step in megakaryocyte maturation
.
Blood Adv
.
2022
;
6
(
10
):
3155
-
3161
.
23.
Mosoyan
G
,
Kraus
T
,
Ye
F
, et al
.
Imetelstat, a telomerase inhibitor, differentially affects normal and malignant megakaryopoiesis
.
Leukemia
.
2017
;
31
(
11
):
2458
-
2467
.
24.
Kruse
N
,
El-Agnaf
OM
,
Mollenhauer
B
.
Validation of electrochemiluminescence assays for highly sensitive and reproducible quantification of alpha-synuclein in cerebrospinal fluid
.
Bioanalysis
.
2017
;
9
(
8
):
621
-
630
.
25.
Pellicciotta
I
,
Marciscano
AE
,
Hardee
ME
,
Francis
D
,
Formenti
S
,
Barcellos-Hoff
MH
.
Development of a novel multiplexed assay for quantification of transforming growth factor-beta (TGF-beta)
.
Growth Factors
.
2015
;
33
(
2
):
79
-
91
.
26.
Breton-Gorius
J
,
Reyes
F
.
Ultrastructure of human bone marrow cell maturation
.
Int Rev Cytol
.
1976
;
46
:
251
-
321
.
27.
Mattia
G
,
Vulcano
F
,
Milazzo
L
, et al
.
Different ploidy levels of megakaryocytes generated from peripheral or cord blood CD34+ cells are correlated with different levels of platelet release
.
Blood
.
2002
;
99
(
3
):
888
-
897
.
28.
Geng
B
,
Pan
J
,
Zhao
T
, et al
.
Chitinase 3-like 1-CD44 interaction promotes metastasis and epithelial-to-mesenchymal transition through beta-catenin/Erk/Akt signaling in gastric cancer
.
J Exp Clin Cancer Res
.
2018
;
37
(
1
):
208
.
29.
He
CH
,
Lee
CG
,
Dela Cruz
CS
, et al
.
Chitinase 3-like 1 regulates cellular and tissue responses via IL-13 receptor alpha2
.
Cell Rep
.
2013
;
4
(
4
):
830
-
841
.
30.
Mascarenhas
J
,
Migliaccio
AR
,
Kosiorek
H
, et al
.
A Phase 1b trial of AVID200, a TGFbeta 1/3 trap, in patients with myelofibrosis
.
Clin Cancer Res
.
2023
;
29
(
18
):
3622
-
3632
.
31.
Daëron
M
,
Jaeger
S
,
Du Pasquier
L
,
Vivier
E
.
Immunoreceptor tyrosine-based inhibition motifs: a quest in the past and future
.
Immunol Rev
.
2008
;
224
:
11
-
43
.
32.
Coxon
CH
,
Geer
MJ
,
Senis
YA
.
ITIM receptors: more than just inhibitors of platelet activation
.
Blood
.
2017
;
129
(
26
):
3407
-
3418
.
33.
Newman
DK
.
G6b-B: the “Y's” and wherefores
.
Blood
.
2018
;
132
(
13
):
1359
-
1360
.
34.
Libreros
S
,
Iragavarapu-Charyulu
V
.
YKL-40/CHI3L1 drives inflammation on the road of tumor progression
.
J Leukoc Biol
.
2015
;
98
(
6
):
931
-
936
.
35.
Bjørn
ME
,
Andersen
CL
,
Jensen
MK
,
Hasselbalch
HC
.
Circulating YKL-40 in myelofibrosis a potential novel biomarker of disease activity and the inflammatory state
.
Eur J Haematol
.
2014
;
93
(
3
):
224
-
228
.
36.
Bergmann
OJ
,
Johansen
JS
,
Klausen
TW
, et al
.
High serum concentration of YKL-40 is associated with short survival in patients with acute myeloid leukemia
.
Clin Cancer Res
.
2005
;
11
(
24 Pt 1
):
8644
-
8652
.
37.
Lee
CG
.
Chitin, chitinases and chitinase-like proteins in allergic inflammation and tissue remodeling
.
Yonsei Med J
.
2009
;
50
(
1
):
22
-
30
.
38.
Lee
CG
,
Da Silva
CA
,
Dela Cruz
CS
, et al
.
Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury
.
Annu Rev Physiol
.
2011
;
73
:
479
-
501
.
39.
Schmidt
H
,
Johansen
JS
,
Gehl
J
,
Geertsen
PF
,
Fode
K
,
von der Maase
H
.
Elevated serum level of YKL-40 is an independent prognostic factor for poor survival in patients with metastatic melanoma
.
Cancer
.
2006
;
106
(
5
):
1130
-
1139
.
40.
Gastinne
T
,
Vigant
F
,
Lavenu-Bombled
C
, et al
.
Adenoviral-mediated TGF-beta1 inhibition in a mouse model of myelofibrosis inhibit bone marrow fibrosis development
.
Exp Hematol
.
2007
;
35
(
1
):
64
-
74
.
41.
Kakumitsu
H
,
Kamezaki
K
,
Shimoda
K
, et al
.
Transgenic mice overexpressing murine thrombopoietin develop myelofibrosis and osteosclerosis
.
Leuk Res
.
2005
;
29
(
7
):
761
-
769
.
42.
Tong
J
,
Sun
T
,
Ma
S
, et al
.
Hematopoietic stem cell heterogeneity is linked to the initiation and therapeutic response of myeloproliferative neoplasms
.
Cell Stem Cell
.
2021
;
28
(
3
):
502
-
513.e6
.
43.
Psaila
B
,
Wang
G
,
Rodriguez-Meira
A
, et al
.
Single-cell analyses reveal megakaryocyte-biased hematopoiesis in myelofibrosis and identify mutant clone-specific targets
.
Mol Cell
.
2020
;
78
(
3
):
477
-
492.e8
.
44.
Varricchio
L
,
Hoffman
R
.
Megakaryocytes are regulators of the tumor microenvironment and malignant hematopoietic progenitor cells in myelofibrosis
.
Front Oncol
.
2022
;
12
:
906698
.
45.
Varricchio
L
,
Iancu-Rubin
C
,
Upadhyaya
B
, et al
.
TGF-beta1 protein trap AVID200 beneficially affects hematopoiesis and bone marrow fibrosis in myelofibrosis
.
JCI Insight
.
2021
;
6
(
18
):
e145651
.
46.
Qiu
QC
,
Wang
L
,
Jin
SS
, et al
.
CHI3L1 promotes tumor progression by activating TGF-beta signaling pathway in hepatocellular carcinoma
.
Sci Rep
.
2018
;
8
(
1
):
15029
.
47.
Guan
R
,
Lin
R
,
Jin
R
, et al
.
Chitinase-like protein YKL-40 regulates human bronchial epithelial cells proliferation, apoptosis, and migration through TGF-beta1/Smads pathway
.
Hum Exp Toxicol
.
2020
;
39
(
4
):
451
-
463
.
48.
Yu
JE
,
Yeo
IJ
,
Han
SB
, et al
.
Significance of chitinase-3-like protein 1 in the pathogenesis of inflammatory diseases and cancer
.
Exp Mol Med
.
2024
;
56
(
1
):
1
-
18
.
49.
Chu
T
,
Hu
S
,
Qi
J
, et al
.
Bifunctional effect of the inflammatory cytokine tumor necrosis factor alpha on megakaryopoiesis and platelet production
.
J Thromb Haemost
.
2022
;
20
(
12
):
2998
-
3010
.
50.
Fleischman
AG
,
Aichberger
KJ
,
Luty
SB
, et al
.
TNFalpha facilitates clonal expansion of JAK2V617F positive cells in myeloproliferative neoplasms
.
Blood
.
2011
;
118
(
24
):
6392
-
6398
.
51.
Masarova
L
,
Mesa
RA
,
Hernández-Boluda
JC
,
Taylor
JA
.
Severe thrombocytopenia in myelofibrosis is more prevalent than previously reported
.
Leuk Res
.
2020
;
91
:
106338
.
52.
Sastow
D
,
Mascarenhas
J
,
Tremblay
D
.
Thrombocytopenia in patients with myelofibrosis: pathogenesis, prevalence, prognostic impact, and treatment
.
Clin Lymphoma Myeloma Leuk
.
2022
;
22
(
7
):
e507
-
e520
.
53.
Marcellino
BK
,
Verstovsek
S
,
Mascarenhas
J
.
The myelodepletive phenotype in myelofibrosis: clinical relevance and therapeutic implication
.
Clin Lymphoma Myeloma Leuk
.
2020
;
20
(
7
):
415
-
421
.
You do not currently have access to this content.
Sign in via your Institution