• Development of AA is the result of a coordinated immune reaction that concentrates within immune hot spots in the BM.

  • During BM destruction, the immune response gradually shifts from an activated to a more differentiated phenotype.

Abstract

The autoimmune response driving hematopoietic stem and progenitor cell (HSPC) destruction in immune-mediated aplastic anemia (AA) remains incompletely understood. We previously identified a disease-specific immune cell network involving T, B, and myeloid cells. However, the interactions within this network, the interaction with the microenvironment, and the chronological events in AA development, remain unclear. In this study, we aimed to characterize the changes occurring during disease development and to define the interactions between potential autoreactive cells and their target. Using imaging mass cytometry, we analyzed bone marrow (BM) biopsies from patients with AA at diagnosis and after treatment with horse-derived anti–thymocyte globulin (hATG), and 6 controls. Within the hypocellular BM architecture, we identified lymphoid-dominant “immune hot spots” with high densities of proinflammatory lymphocytes, and macrophage-enriched hot spots that additionally contained activated macrophages in proximity to progenitors. These immune hot spots potentially represent sites in which the active immune response resulting in HSPC destruction takes place. In BM regions depleted of progenitors, effector cells with a differentiated phenotype remain. Our data indicate that HSPC destruction in AA is mediated by coordinated interactions among specific immune cell subpopulations. As the immune response progresses and HSPCs are depleted, the immune composition shifts, with activated T and B cells differentiating into terminally differentiated T cells and plasma cells. In patients with normalizing BM after hATG treatment, most immune hot spots were depleted, underscoring their potential pathogenic role. Collectively, our study visualizes the complex interactions among immune cell subpopulations and reveals, to our knowledge, for the first time, the order of events in the immune-mediated pathogenesis of AA.

1.
Young
NS
.
Aplastic anemia
.
N Engl J Med
.
2018
;
379
(
17
):
1643
-
1656
.
2.
Halkes
CJ
,
Veelken
H
,
Falkenburg
JH
.
Horse versus rabbit antithymocyte globulin in aplastic anemia
.
N Engl J Med
.
2011
;
365
(
19
):
1842
-
1844
.
3.
Scheinberg
P
,
Nunez
O
,
Weinstein
B
, et al
.
Horse versus rabbit antithymocyte globulin in acquired aplastic anemia
.
N Engl J Med
.
2011
;
365
(
5
):
430
-
438
.
4.
Kulasekararaj
A
,
Cavenagh
J
,
Dokal
I
, et al;
BSH Committee
.
Guidelines for the diagnosis and management of adult aplastic anaemia: a British Society for Haematology guideline
.
Br J Haematol
.
2024
;
204
(
3
):
784
-
804
.
5.
Peffault de Latour
R
,
Kulasekararaj
A
,
Iacobelli
S
, et al;
Severe Aplastic Anemia Working Party of the European Society for Blood and Marrow Transplantation
.
Eltrombopag added to immunosuppression in severe aplastic anemia
.
N Engl J Med
.
2022
;
386
(
1
):
11
-
23
.
6.
Pool
ES
,
Kooy-Winkelaar
Y
,
van Unen
V
, et al
.
Mass cytometric analysis unveils a disease-specific immune cell network in the bone marrow in acquired aplastic anemia
.
Front Immunol
.
2023
;
14
:
1274116
.
7.
Takaku
T
,
Malide
D
,
Chen
J
,
Calado
RT
,
Kajigaya
S
,
Young
NS
.
Hematopoiesis in 3 dimensions: human and murine bone marrow architecture visualized by confocal microscopy
.
Blood
.
2010
;
116
(
15
):
e41
-
e55
.
8.
Tjon
JM-L
,
Zeerleder
SS
,
Groot
MRd
, et al
.
Diagnostiek en behandeling verworven aplastische anemie bij volwassenen [in Dutch]
.
Nederlandse Vereniging voor Hematologie
.
2019
.
9.
Ijsselsteijn
ME
,
van der Breggen
R
,
Farina Sarasqueta
A
,
Koning
F
,
de Miranda
N
.
A 40-marker panel for high dimensional characterization of cancer immune microenvironments by imaging mass cytometry
.
Front Immunol
.
2019
;
10
:
2534
.
10.
Krop
J
,
van der Zwan
A
,
Ijsselsteijn
ME
, et al
.
Imaging mass cytometry reveals the prominent role of myeloid cells at the maternal-fetal interface
.
iScience
.
2022
;
25
(
7
):
104648
.
11.
Ouboter
LF
,
Lindelauf
C
,
Jiang
Q
, et al
.
Activated HLA-DR+CD38+ effector Th1/17 cells distinguish Crohn's disease-associated perianal fistulas from cryptoglandular fistulas
.
Inflamm Bowel Dis
.
2024
;
30
(
11
):
2146
-
2161
.
12.
Dieckman
T
,
Schreurs
M
,
Mahfouz
A
, et al
.
Single-cell analysis of refractory celiac disease demonstrates inter- and intra-patient aberrant cell heterogeneity
.
Cell Mol Gastroenterol Hepatol
.
2022
;
14
(
1
):
173
-
192
.
13.
Uhlen
M
,
Karlsson
MJ
,
Zhong
W
, et al
.
A genome-wide transcriptomic analysis of protein-coding genes in human blood cells
.
Science
.
2019
;
366
(
6472
):
eaax9198
.
14.
Pontén
F
,
Jirström
K
,
Uhlen
M
.
The Human Protein Atlas--a tool for pathology
.
J Pathol
.
2008
;
216
(
4
):
387
-
393
.
15.
Beyrend
G
,
Stam
K
,
Höllt
T
,
Ossendorp
F
,
Arens
R
.
Cytofast: a workflow for visual and quantitative analysis of flow and mass cytometry data to discover immune signatures and correlations
.
Comput Struct Biotechnol J
.
2018
;
16
:
435
-
442
.
16.
Ijsselsteijn
ME
,
Somarakis
A
,
Lelieveldt
BPF
,
Höllt
T
,
de Miranda
N
.
Semi-automated background removal limits data loss and normalizes imaging mass cytometry data
.
Cytometry A
.
2021
;
99
(
12
):
1187
-
1197
.
17.
Stirling
DR
,
Swain-Bowden
MJ
,
Lucas
AM
,
Carpenter
AE
,
Cimini
BA
,
Goodman
A
.
CellProfiler 4: improvements in speed, utility and usability
.
BMC Bioinformatics
.
2021
;
22
(
1
):
433
.
18.
Hollt
T
,
Pezzotti
N
,
van Unen
V
, et al
.
Cytosplore: interactive immune cell phenotyping for large single-cell datasets
.
Computer Graphics Forum
.
2016
;
35
(
3
):
171
-
180
.
19.
Windhager
J
,
Zanotelli
VRT
,
Schulz
D
, et al
.
An end-to-end workflow for multiplexed image processing and analysis
.
Nat Protoc
.
2023
;
18
(
11
):
3565
-
3613
.
20.
Somarakis
A
,
Van Unen
V
,
Koning
F
,
Lelieveldt
B
,
Hollt
T
.
ImaCytE: visual exploration of cellular micro-environments for imaging mass cytometry data
.
IEEE Trans Vis Comput Graph
.
2021
;
27
(
1
):
98
-
110
.
21.
Vaht
K
,
Brenner
J
,
Ednersson
SB
,
Ljungman
P
,
Brune
M
,
Andersson
PO
.
Bone marrow expression of CD68/CD163 macrophages, IL-17 and FOXP3 cells in aplastic anemia and their relation to prognosis
.
Eur J Haematol
.
2023
;
110
(
3
):
313
-
321
.
22.
Zhang
X
,
Song
B
,
Carlino
MJ
, et al
.
An immunophenotype-coupled transcriptomic atlas of human hematopoietic progenitors
.
Nat Immunol
.
2024
;
25
(
4
):
703
-
715
.
23.
Wu
Q
,
Zhang
J
,
Kumar
S
, et al
.
Resilient anatomy and local plasticity of naive and stress haematopoiesis
.
Nature
.
2024
;
627
(
8005
):
839
-
846
.
24.
Han
X
,
Jorgensen
JL
,
Brahmandam
A
, et al
.
Immunophenotypic study of basophils by multiparameter flow cytometry
.
Arch Pathol Lab Med
.
2008
;
132
(
5
):
813
-
819
.
25.
Welker
P
,
Grabbe
J
,
Zuberbier
T
,
Guhl
S
,
Henz
BM
.
Mast cell and myeloid marker expression during early in vitro mast cell differentiation from human peripheral blood mononuclear cells
.
J Invest Dermatol
.
2000
;
114
(
1
):
44
-
50
.
26.
Agematsu
K
,
Hokibara
S
,
Nagumo
H
,
Komiyama
A
.
CD27: a memory B-cell marker
.
Immunol Today
.
2000
;
21
(
5
):
204
-
206
.
27.
de Latour
RP
,
Visconte
V
,
Takaku
T
, et al
.
Th17 immune responses contribute to the pathophysiology of aplastic anemia
.
Blood
.
2010
;
116
(
20
):
4175
-
4184
.
28.
Kordasti
S
,
Marsh
J
,
Al-Khan
S
, et al
.
Functional characterization of CD4+ T cells in aplastic anemia [published correction appears in Blood. 2020;136(9):1114]
.
Blood
.
2012
;
119
(
9
):
2033
-
2043
.
29.
Kordasti
S
,
Costantini
B
,
Seidl
T
, et al
.
Deep phenotyping of Tregs identifies an immune signature for idiopathic aplastic anemia and predicts response to treatment
.
Blood
.
2016
;
128
(
9
):
1193
-
1205
.
30.
Bandyopadhyay
S
,
Duffy
MP
,
Ahn
KJ
, et al
.
Mapping the cellular biogeography of human bone marrow niches using single-cell transcriptomics and proteomic imaging
.
Cell
.
2024
;
187
(
12
):
3120
-
3140.e29
.
31.
Kook
H
,
Zeng
W
,
Guibin
C
,
Kirby
M
,
Young
NS
,
Maciejewski
JP
.
Increased cytotoxic T cells with effector phenotype in aplastic anemia and myelodysplasia
.
Exp Hematol
.
2001
;
29
(
11
):
1270
-
1277
.
32.
Hu
X
,
Gu
Y
,
Wang
Y
,
Cong
Y
,
Qu
X
,
Xu
C
.
Increased CD4+ and CD8+ effector memory T cells in patients with aplastic anemia
.
Haematologica
.
2009
;
94
(
3
):
428
-
429
.
33.
Zaimoku
Y
,
Patel
BA
,
Kajigaya
S
, et al
.
Deficit of circulating CD19(+) CD24(hi) CD38(hi) regulatory B cells in severe aplastic anaemia
.
Br J Haematol
.
2020
;
190
(
4
):
610
-
617
.
34.
Gascón
P
,
Zoumbos
N
,
Young
N
.
Analysis of natural killer cells in patients with aplastic anemia
.
Blood
.
1986
;
67
(
5
):
1349
-
1355
.
35.
Vissers
LTW
,
van Ostaijen-Ten Dam
MM
,
Melsen
JE
, et al
.
Potential role of B- and NK-cells in the pathogenesis of pediatric aplastic anemia through deep phenotyping
.
Front Immunol
.
2024
;
15
:
1328175
.
36.
Ben Hamza
A
,
Welters
C
,
Stadler
S
, et al
.
Virus-reactive T cells expanded in aplastic anemia eliminate hematopoietic progenitor cells by molecular mimicry
.
Blood
.
2024
;
143
(
14
):
1365
-
1378
.
You do not currently have access to this content.
Sign in via your Institution