CREB is a nuclear transcription factor that plays an important role in regulating cellular proliferation, memory, and glucose homeostasis. We previously demonstrated that CREB is overexpressed in bone marrow cells from a subset of patients with acute leukemia at diagnosis. Furthermore, CREB overexpression is associated with an increased risk of relapse and decreased event-free survival in adult AML patients. Transgenic mice that overexpress CREB in myeloid cells developed myeloproliferative/myelodysplastic syndrome after one year. To further understand the role of CREB in leukemogenesis and in normal hematopoiesis, we employed RNA interference methods to inhibit CREB expression. To achieve sustained, CREB-specific gene knockdown in leukemia and normal hematopoietic cells, a lentiviral-based small hairpin (shRNA) approach was taken. Three CREB specific shRNAs were generated and tested for efficiency of gene knockdown in 293T cells. Knockdown efficiency approached 90 percent by Western blot analysis compared to vector alone and luciferase controls. Human myeloid leukemia cell lines, K562, TF1, and MV411, were then infected with CREB shRNA lentivirus, sorted for GFP expression, and analyzed using quantitative real time (qRT)-PCR, Western blot analysis, and growth and viability assays. Lentiviral CREB-shRNA achieved between 50 to 90 percent knockdown of CREB compared to control shRNAs at the protein and mRNA levels. To control for non-specific effects, we performed qRT-PCR analysis of the interferon response gene, OAS1, which was not upregulated in cells transduced with CREB shRNA constructs. Within 72 hours, cells transduced with CREB shRNA had decreased proliferation and survival. Similar results were obtained with murine leukemia cells (NFS60 and BA/F3 bcr-abl).To study the role of CREB in normal hematopoiesis, both primary murine and human hematopoietic cells were transduced with our shRNA constructs, and methylcellulose-based colony assays were performed. Primary hematopoietic cells infected with CREB shRNA lentivirus demonstrated a 5-fold decrease in colony number compared to control virus-infected cells (p<0.05). Bone marrow colonies consisted of myeloid progenitor cells that were mostly Mac-1+ by FACs analysis. Interestingly, there were fewer differentiated cells in the CREB shRNA transduced cells compared to vector control or wild type cells, suggesting that CREB is critical for both myeloid cell proliferation and differentiation. To study the in vivo effects of CREB knockdown on leukemia progression, we studied mice injected with BA/F3 cells that express both bcr/abl with the T315I mutation and a luciferase reporter gene. BA/F3 cells expressing the T315I mutation have a 2-fold increase in CREB overexpression compared to wild-type cells. Disease progression was monitored using bioluminescence imaging with luciferin. CREB knockdown was 90 percent after transduction and prior to injection into SCID mice. We observed improved survival of mice injected with CREB shRNA transduced BA/F3 bcr-abl (T315I) compared to vector control cells. To understand the mechanism of growth suppression resulting from CREB downregulation, we performed microarray analysis with RNA from CREB shRNA transduced K562 and TF1 cells. Several genes were downregulated using a Human Affymetrix chip. Most notable was Beclin1, a tumor suppressor gene often deleted in prostate and breast cancer that has been implicated in autophagy. Our results demonstrate that CREB is required for normal and leukemic cell proliferation both in vitro and in vivo.

Disclosure: No relevant conflicts of interest to declare.

Author notes

*

Corresponding author

Sign in via your Institution