Abstract
The Growth factor independence 1 (Gfi1) zinc finger transcriptional repressor is a T cell leukemia oncoprotein that also plays a crucial role in granulopoiesis in both mice and humans. A single point mutation in the amino terminal SNAG repressor domain (P2A) is able to ablate both Gfi1 transcriptional repression activity and linked oncogenic activity in T lymphoctyes. Mice deleted for Gfi1 are lymphopenic, but also lack mature neutrophils. Gfi1−/− mice display a profound block to myeloid differentiation and abnormal promyelocytes accumulate in the blood. Humans with Severe Congenital Neutropenia (SCN) with heterozygous mutations in Gfi1 have similar abnormal promyelocytes. We introduced the SCN patient Gfi1N382S DNA-binding-deficient mutation into murine Gfi1 and overexpressed it in primary murine bone marrow cells. While expression of the wild type Gfi1 resulted almost exclusively in mature granulocyte differentiation, forced expression of the N382S mutant resulted almost exclusively in monocytic differentiation. Flow cytometric analysis revealed a population of N382S-expressing cells with markers of both monocytes and neutrophils resembling the atypical Gfi1−/− promyelocytes. To determine if mutation of the N382 residue is uniquely able to block Gfi1 function, we constructed a virtual model of Gfi1 zinc fingers 3, 4 and 5 interacting with DNA. The model revealed several possible protein-DNA interactions. In order to validate the model we mutated those residues to alanine and performed EMSA with in vitro transcribed/translated proteins. The same alanine substitution mutants were expressed in primary murine bone marrow and tested for their ability to control myelopoiesis. Lack of DNA binding in EMSA tightly correlated with impaired granulopoesis in our in vitro model, suggesting the necessity of intact DNA binding for proper Gfi1 function. These data suggested that the non-DNA binding mutants were able to inhibit repression by wild type endogenous Gfi1, perhaps through the sequestration of limiting corepressor proteins. The Gfi1P2A mutant is unable to repress transcription. We therefore tested the effect of Gfi1P2A expression on myelopoiesis and found that it blocked granulopoiesis equivalently to Gfi1N382S. To rigorously determine whether the titration of limiting corepressors was the cause of N382S neutropenia, we constructed a compound mutant containing both N382S and P2A and expressed it in primary murine bone marrow cells. Expression of Gfi1P2A-N382S had little effect on myelopoiesis. We conclude that SCN patients with heterozygous Gfi1 mutations have blocked granulopoiesis because the non-DNA binding mutant protein competes with the wild type allele for titratable associated cofactors.
Disclosure: No relevant conflicts of interest to declare.
Author notes
Corresponding author