Abstract
In a large microRNA-array and bioinformatics study, we determined all of the microRNAs (miRs) expressed by human CD34+ hematopoietic stem-progenitor cells (HSPCs) from bone marrow and G-CSF mobilized blood. When we combined miR expression data, mRNA expression data from a previous study (Georgantas et al, Cancer Research 64:4434), and data from various published miR-target prediction algorithms, we were able to bioinformaticly predict the actions of miRs within the hematopoietic system. MircoRNA hsa-mir-155 was highly expressed in CD34+ HSPCs, and was predicted by our bioinformatics database to target several HSPC-expressed mRNAs (CREBBP, CXCR4, Jun, Meis-1, PU.1, AGTRI, AGTRII, Fos, and GATA3) that encode proteins known to be involved in myeloid and/or erythroid differentiation. We used luciferase-3′UTR reporter constructs to confirm that protein expression from these mRNAs were in fact down regulated by microRNA. As an initial test of mir-155′s effect on hematopoietic differentiation, K562 cells were transduced with hsa-mir-155 lentivirus and then exposed to TPA to induce megakaryocyte differentiation, or to hemin to induce erythroid differentiation. Compared to controls, miR-155 reduced K562 megakaryocyte differentiation by ~70%, and erythroid differentiation by >90%. Thus, mir-155 appears to be sufficient to inhibit both megakayrocyte and erythroid differentiation. K562 proliferation was not affected by mir-155, showing that the differentiation block was not due to cell cycle arrest. MicroRNA hsa-mir-155-transduced human mobilized blood CD34+ cells generated >70% fewer myeloid and erythroid colonies than controls in colony forming (CFC) assays, further indicating that mir-155 blocks both myeloid and erythroid differentiation. We are currently further testing the effects of mir-155 on differentiation of CD34+ cells in vitro, and also in vivo on their ability to engraft immunodeficient mice.
Disclosures: The Johns Hopkins University holds patents on CD34 monoclonal antibodies and inventions related to stem cells. Dr. Civin is entitled to a share of the sales royalty received by the University under licensing agreements between the University, Becton Dickinson Corporation and Baxter HealthCare Corporation. The terms of this arrangement are being managed by the Johns Hopkins University in accordance with its conflict of interest policies.
Author notes
Corresponding author