Abstract
AIDS remains a significant health problem worldwide despite the advent of highly active antiretroviral therapy (HAART). Although substantial efforts have been made to develop a vaccine there is still no cure and alternative strategies are needed to treat HIV infection and to control its spread. Our goal is to evaluate lenti and foamy retroviral vectors that inhibit HIV replication by RNAi in a non-human primate SHIV model to develop a hematopoietic stem cell (HSC) gene therapy for AIDS. SHIV is a chimeric virus comprised of an SIV genome that contains the tat, rev and env genes of HIV and infects both T lymphocytes and macrophages. Infection of non-human primates with SHIV results in significant decreases in CD4+ T cells as early as 4 weeks post infection, and is currently the best large animal model available to test gene therapy strategies for AIDS. However inefficient gene delivery to hematopoietic stem cells has limited progress for AIDS gene therapy. We have developed both lenti and foamy retroviral vectors that contain methylguanine-DNA-methyltransferase (MGMT) expression cassettes to allow for in vivo selection, and have transduced macaque (M. nemestrina) long term repopulating cells with both vector systems. Following transplantation we observed rapid engraftment and levels of gene marking in the peripheral blood that should allow us to in vivo select both lenti and foamy-marked hematopoietic repopulating cells. In one animal transplanted with a lentiviral vector we obtained marking at 265 days post-transplant of over 30% in peripheral blood granulocytes and 20% in peripheral blood lymphocytes prior to in vivo selection. Anti-SHIV/HIV transgene cassettes targeting tat and rev that allow for potent inhibition of SHIV and HIV replication in vitro have been incorporated into both lenti and foamy vectors and we have transduced macaque long term repopulating cells with lenti vectors containing an anti-HIV cassette. We are currently developing protocols for efficient in vivo selection and future studies will investigate the ability of macaque hematopoietic repopulating cells transduced with lenti and foamy MGMT anti-HIV vectors to inhibit SHIV infection ex vivo and in vivo.
Disclosure: No relevant conflicts of interest to declare.
Author notes
Corresponding author