Abstract
Chronic GVHD (cGVHD) is a major risk factor in patients receiving allogeneic hematopoietic cell transplantation (HCT), and is a complicated syndrome with a combination of autoimmune-like features and a range of multiorgan manifestations. Currently, efforts are being made to standardize the criteria for diagnosis and staging of cGVHD, but there is little understanding of the pathogenesis of the disease, associated biomarkers, and the immune perturbations that may result. Reconstitution of the T cell repertoire after allo-HCT often takes several months to a year, and may be significantly impaired or skewed in patients who develop cGVHD. We thus sought to assess the immune T cell status of cGVHD patients by TCR Vβ CDR3-size spectratype analysis. A cohort of 9 patients who underwent allo-HCT (PBMC n=7; BM n=2) were enrolled in the study. The underlying diseases in these patients were CML (n=1), AML (n=4), ALL (n=1), CLL (n=1), and MM (n=2). Patients received either reduced intensity or myeloablative conditioning before transplantation, and 8 of the 9 had a previous history of acute GVHD. Furthermore, the patients did not have evidence of infectious disease. PBMC was collected from each patient at one time point ranging from 2 wk to 3 yr from the time they were diagnosed with cGVHD. The onset of cGVHD ranged from 100 d to 3 yr post-HCT (median of 5 mo). Flow cytometric analysis was performed on peripheral blood lymphocytes from 7 of the 9 patients to analyze recovery of different subpopulations. PCR amplification of the CDR3 region of 21 TCR Vβ genes was used to analyze the diversity of the T cell repertoire. The PCR products were run on a sizing gel to separate the CDR3-lengths, and further analyzed by ABI GeneMapper software. Flow cytometric analysis revealed diverse percentages of CD4+ and CD8+ T cells among the 7 patients tested, which were correlated with the post-HCT period. Two patients who received HCT, 4 and 9 months before blood sampling, had only 3% and 4% CD4+ and 3% and 9% CD8+ T cells in their PBMC sample, respectively. On the other hand, the remaining 5 patients, who were all at later time points post-HCT, had CD4+ and CD8+ T cell percentages within normal range. One patient had a ratio close to the normal 2:1 CD4/CD8 ratio, two patients had a 1:1 ratio, and four had inverse CD4/CD8 ratios. Based on CDR3-size spectratype analysis, we determined the recipient TCR-Vβ complexity index within each resoluble family, which represented the percentage of the number of peaks found for each Vβ relative to that found in the average corresponding Vβ family of 10 healthy donors. We considered Vβ to be fully complex if the complexity index exceeded 85%. The results indicated that 41 to 88% of resolved Vβ in all 9 patients were fully complex, with the lower range corresponding to those patients sampled early post-HCT. Vβ 1, 2, 4, 6, 8, 12, and 13 families revealed the best recovery in all patients, even in patients after 4-mo post-HCT. Importantly, extensive skewing of the repertoire within most of the TCR Vβ families were found in all 9 recipients, suggesting that there were active heterogenous T cell responses in those patients with cGVHD. As to what these T cell responses were directed to remains to be seen, and could theoretically involve autoantigens, alloantigens, tumor antigens, or sub-detectable infectious agents. In any case, the presence of a wide-ranging T cell response in these patients may serve as an important new diagnostic indicator for cGVHD.
Disclosure: No relevant conflicts of interest to declare.
Author notes
Corresponding author