Abstract
Abstract 832
We hypothesized that new therapeutic targets for multiple myeloma (MM) could be discovered through the integrative computational analysis of genomic data. Accordingly, we generated gene expression profiling and copy number data on 250 clinically-annotated MM patient samples. Utilizing an outlier statistical approach, we identified HOXA9 as the top candidate gene for further investigation. HOXA9 expression was particularly high in patients lacking canonical MM chromosomal translocations, and allele-specific expression analysis suggested that this overexpression was mono-allelic. Indeed, focal copy number amplifications at the HOXA locus were observed in some patients. Outlier HOXA9 expression was further validated in both a collection of 52 MM cell lines and 414 primary patient samples previously described. To further verify the aberrant expression of HOXA9 in MM, we performed quantitative RT-PCR, which confirmed expression in all MM patients and cell lines tested, with high-level expression in a subset. To further investigate the mechanism of aberrant HOXA9 expression, we interrogated the pattern of histone modification at the HOXA locus because HOXA gene expression is particularly regulated by such chromatin marks. Accordingly, immunoprecipitation studies showed an aberrantly low level of histone 3 lysine 27 trimethylation marks (H3K27me3) at the HOXA9 locus. H3K27me3 modification is normally associated with silencing of HOXA9 in normal B-cell development. As such, it appears likely that the aberrant expression of HOXA9 in MM is due at least in part to defects in histone modification at this locus. To determine the functional consequences of HOXA9 expression in MM, we performed RNAi-mediated knock-down experiments in MM cell lines. Seven independent HOXA9 shRNAs that diminished HOXA9 expression resulted in growth inhibition of 12/14 MM cell lines tested. Taken together, these experiments indicate that HOXA9 is essential for survival of MM cells, and that the mechanism of HOXA9 expression relates to aberrant histone modification at the HOXA9 locus. The data thus suggest that HOXA9 is an attractive new therapeutic target for MM.
No relevant conflicts of interest to declare.
Author notes
Asterisk with author names denotes non-ASH members.