Abstract 1896

The curative potential of MHC-matched allogeneic bone marrow transplantation (BMT) is in part due to immunologic graft-versus-tumor (GvT) reactions mediated by donor T cells that recognize host minor histocompatibility antigens. Immunization with leukemia-associated antigens, such as Wilm's Tumor 1 (WT1) peptides, induces a T cell population that is tumor antigen specific. We determined whether BMT combined with immunotherapy using WT1 peptide vaccination of donors induced more potent anti-tumor activity when combined with allotransplantation. WT1 peptide vaccinations of healthy syngeneic or allogeneic donor mice with a 9-mer WT1 peptide (amino acids 126–134, the WT1 9-mer which has the highest binding affinity for H-2Db) and Incomplete Freund's Adjuvant induced CD8+ T cells that were specifically reactive to WT1-expressing FBL3 leukemia cells. We found that compared to vaccination with IFA alone, four weekly WT1 vaccinations induced an increased percentage of WT1-tetramer+CD8 T-cells (0.15% vs. 1%) in the peripheral blood 28 days following the first vaccination (Figure A *p<.001). CD8 T-cells producing IFN-γ+ after co-culture with tumor cells were similarly increased (0.11% vs. 13.6%) at this timepoint (Figure B *p<.001). They were CD44hi suggesting a memory phenotype, specifically reactive to WT1-expressing tumor (FBL3 and not H11), and increased in a vaccination dose-dependent fashion (Figure A and B). Four weekly WT1 vaccinations prevented tumor growth in donors following intravenous leukemia challenge. In contrast, in tumor-bearing mice, WT1 vaccinations failed to induce WT1-tetramer+ or IFN-γ+ CD8 T-cells and were ineffective as a therapeutic vaccine based on intensity of bioluminescence from luciferase-labeled FBL3 leukemia and mortality. BMT from WT1 vaccinated MHC-matched donors including LP/J and C3H.SW, but not C57BL/6 syngeneic donors, into C57BL/6 recipient tumor-bearing mice was effective as a therapeutic maneuver and resulted in eradication of luciferase-labeled FBL3 leukemia and survival of 70–90% of mice. Interestingly, the transfer of total CD8+ T cells from immunized donors was more effective than the transfer of WT1-tetramer+CD8+ T cells, likely as a result of alloreactive and tumor-antigen reactive T cells contained with the donor total CD8+ T cells. Total and tetramer+CD8+ T cells required CD4+ T cell help for maximal anti-tumor activity, which was equivalent in efficacy from immunized or unimmunized CD4+ T cell donors. Total CD4+ T cells, alone, from immunized donors provided no anti-tumor activity. The infused donor LP/J or C3H.SW CD8+ T cells collected from cured C57BL/6 recipients, were highly reactive against WT1-expressing FBL3 leukemia cells (14% IFN-γ+) compared to non-WT1-expressing H11 leukemia cells (5% IFN-γ+). The circulating, WT1-tetramer+CD8+ T cell population expanded in cured recipients, peaking at 3.5% on day 50 and contracting through day 100 post-BMT to 0.56%. These findings show that peptide vaccination of donor mice with a tumor antigen dramatically enhances GvT activity and is synergistic with allogeneic BMT. This novel and broadly applicable approach, using leukemia-associated antigen immunization to enhance GvT by creating an “educated” donor T cell graft for allogeneic transplantation of patients with acute myeloid leukemia and myelodysplastic syndrome, is currently being translated to a Phase 1 clinical trial at our institution.
Disclosures:

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution