Abstract
Abstract 2971
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the only curative treatment for patients with relapsed/refractory leukemia, and marrow failure states such as myelodysplasia and aplastic anemia. However, allo-HSCT is complicated by allogeneic donor T cell-mediated graft-versus-host disease (GvHD) which can be life-threatening especially in recipients of unrelated or HLA-mismatched hematopoietic stem cell products. These same alloreactive donor T cells also mediate a beneficial graft-versus-leukemia (GvL) effect. Thus, the clinical goal in allo-HSCT is to minimize GvHD while maintaining GvL. Recent studies have suggested that this might be achieved by infusing regulatory T cells (Tregs) which in some preclinical models suppress GvHD-causing alloreactive donor T cells but have only limited effects on GvL-promoting alloreactive donor T cells. Unfortunately, Tregs exist in low frequency in the peripheral blood, are costly to purify and expand, and after expansion are difficult to isolate due to the lack of cell surface markers, all of which prevent their routine use in the clinic. Thus, alternative therapeutic approaches that do not require Tregs are needed.
Using a MHC-mismatched GvHD model, B6 (H-2b) → Balb/c (H-2d), we demonstrated that infusion of IFN γR deficient allogeneic donor T cells induce significantly less GvHD, compared to WT T cells, determined by survival (74% vs. 0 % in overall survival; p =0.0004), weight and percentages of B220+ B cells (12.4% vs. 3.8%; p =0.0205), CD3+ T cells (14.3% vs. 4.3%; p =0.0025) in blood. Of note was that the IFN γR deficient donor T cells maintained a beneficial GvL effect, which was examined in both a systemic leukemia and a solid tumor model using luciferase-expressing A20 cells derived from Balb/c. We found that IFN γR deficient donor T cells responded normally to allogeneic antigens as measured by in vitro mixed lymphocyte reaction analyses, and express similar levels of granzyme B, compared to WT T cells. However, IFN γR deficient T cells trafficked predominantly to the spleen while WT T cells trafficked to gastrointestinal tract and peripheral lymph nodes, which are major GvHD target organs, based on in vivo bioluminescence imaging. All of these findings suggest that the reduced GvHD was not due to reduced function, altered subsets or relative deficiency of allogeneic donor T cells but from modification of in vivo trafficking of IFN γR deficient donor T cells compared to WT T cells. We further demonstrated that the IFN γR-mediated signaling in alloreactive donor T cells was required for expression of CXCR3 which has been implicated in trafficking of T cells to areas of inflammation and target organs, commonly known to be the sites of GvHD. CXCR3−/− T cells demonstrated a reduction in GvHD while maintenance of the same robust GvL effect using the same MHC mismatched transplant model. Thus, the IFN γR-CXCR3 axis represents a promising therapeutic target for future efforts to mitigate GvHD while maintaining GvL after allo-HSCT. Current studies are focused on 1) whether forced expression of CXCR3 rescues the GvHD-inducing potential of IFN γR deficient donor T cells and 2) if inhibition of IFN γR signaling (IFN γR, JAK1 and/or JAK2, CXCR3 and STAT1) using both neutralizing antibodies and small molecule inhibitors can recapitulate the anti-GvHD and pro-GvL effects seen in IFN γR−/− and CXCR3−/− T cells.
No relevant conflicts of interest to declare.
Author notes
Asterisk with author names denotes non-ASH members.