Both HDAC inhibitors (HDACIs) and DNA methyltransferase inhibitors (DNMTIs) are known to influence global expression patterns in hematologic malignancies. Little is known about the combination of these two drug classes in lymphoid malignancies. HDACIs have marked single agent activity in the T- cell lymphomas (TCL), although the mechanism of action is not well defined. DNMTIs affect cytosine methylation of genomic DNA and have activity mainly restricted to the myeloid derived hematologic malignancies. The single agent efficacy and synergistic interaction of a panel of HDACIs (panobinostat, belinostat, romidepsin and vorinostat) and DNMTIs (decitabine (DEC), 5-azacytadine (5-AZA)) was evaluated in models of TCL. The molecular basis for the synergistic effect of HDACIs and DNMTIs was evaluated by gene expression profiling (GEP) and CpG methylation CTCL.

Single agent concentration and time effect relationships were generated for 2 CTCL (HH, H9) and 2 T-ALL (P12, PF382) cell lines. Romidepsin and belinostat were the most potent HDACIs with the mean 48 hour IC50 of 8.8 nM (range 1.7-2.7 nM) and 85 nM (range 36-136 nM), respectively. Cell viability was not affected by treatment with DEC or 5-AZA at 24 and 48 hours at concentrations as high as 20 μM. Reduction in viability was first demonstrated after 72 hours of exposure to DEC, with the mean IC50 of 14.8 μM (range 0.4 μM- >20uM). Simultaneous exposure of combinations of DEC plus romidepsin or DEC plus belinostat at their IC10, IC20, and IC50 produced marked synergy in all TCL derived cell lines. Simultaneous exposure of DEC plus romidepsin demonstrated the deepest synergy at 72 hours with synergy coefficients in the range of 0.3. Cells treated with the combination of DEC plus romidepsin also demonstrated significant induction of apoptosis as evaluated by annexinV/propridium iodide via FACS analysis and an increase in acetylated histone 3 by immunoblot.

The in vivo activity of the combination of DEC plus belinostat was investigated in a xenograft model of CTCL using HH, the most resistant TCL derived cell line. Mice were treated with DEC 1.5 mg/kg (day 29, 33, 35, 37, 39, 41, 43) and/or belinostat 100 mg/kg (day 29-day 47). The combination mouse cohort demonstrated statistically significant tumor growth delay compared to DEC alone (p=0.002) and belinostat alone (p=0.001).

The interaction of DEC and romidepsin was analyzed by GEP and methylation array. Interestingly, the baseline malignant phenotype seen in the CTCL cell-lines was reversed. A significant down-regulation of genes involved in biosynthetic pathways including protein and lipid synthesis, and a significant up-regulation of genes responsible for cell cycle arrest were seen. The vast majority (114/138; 92%) of genes modulated by the single agents were similarly modulated by the combination. However, the latter induced a further significant change in the transcriptome, affecting an additional 390 genes. Similarly, methylation array data was analyzed following treatment of these drugs alone and in combination. DEC induced de-methylation of 190 different gene regions corresponding to 175 genes and an additional 335 loci. Interestingly, when combined with romidepsin the number of demethylated gene regions decreased to 85 corresponding to 79 genes, 78 of which were common with DEC and 148 additional loci. The comparison of gene expression and methylation demonstrated a significant inverse relationship (R2 = 0.657) with genes found to be differentially expressed in GEP and methylation analysis. (Figure 1)
Figure 1

Summary of gene expression and methylation analysis.

Figure 1

Summary of gene expression and methylation analysis.

Close modal

These data support the observation that DNMTIs in combination with HDACIs produces significant synergistic activity in models of TCL. Further evaluation of the mechanism of action with DNMTIs in combination with HDACIs is ongoing, and a clinical trial of the combination is now open.

Disclosures:

O'Connor:Celgene Pharmaceuticals: Consultancy; Spectrum Pharmaceuticals: Membership on an entity’s Board of Directors or advisory committees; Allos Therapeutics: Consultancy, Membership on an entity’s Board of Directors or advisory committees. Off Label Use: Hypomethylating Agents in T-cell lymphoma. Amengual:Acetylon Pharmacueticals, INC: Membership on an entity’s Board of Directors or advisory committees, Research Funding.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution