Abstract
Background
The past decade has witnessed a significant progress in the understanding of the molecular pathogenesis of myeloproliferative neoplasms (MPN). A large number of genes have now been implicated in the pathogenesis of MPN but their relative importance, the mechanisms by which they cause different cell types to predominate and their implications for prognosis remain unknown. We hypothesized that there are other genes which may contribute to the pathogenesis of the different disease subtypes detectable only by cell-type specific analysis.
Aim
The aim of this study was to perform gene expression profiling on different cell types from patients with MPN in order to identify novel variants and driver mutations, to elucidate the pathogenesis and to identify predictors of survival in patients with MPN in a multiracial country.
Methods
We performed gene expression profiling on normal controls (NC) and patients with MPN from 3 different races (Malay, Chinese and Indian) in Malaysia who were diagnosed with essential thrombocythemia (ET), polycythemia vera (PV) and primary myelofibrosis (PMF) according to the 2008 WHO diagnostic criteria for MPN. Two cohorts of patients, the patient and validation cohorts, from 3 tertiary-level hospitals were recruited prospectively over 3 years and informed consents were obtained. Peripheral blood samples were taken and sorted into polymorphonuclear cells (PMNs), mononuclear cells (MNCs) and T cells. RNA was extracted from each cell population. Gene expression profiling was performed using the Illumina HumanHT-12 Expression Beadchip for microarray and the Illumina Nextera XT DNA Sample Preparation Kit for next generation sequencing on the patient and validation cohorts respectively.
Results
Twenty-eight patients (10 ET, 11 PV and 7 PMF) and 11 NC were recruited into the patient cohort. Twelve patients (4 ET, 4 PV and 4 PMF) and 4 NC were recruited into the validation cohort. Gene expression levels for each cell type in each disease were compared with NC. In the patient cohort, the number of differentially expressed genes in ET, PV and PMF was 0, 141 and 15 respectively for PMNs (p < 0.05 after multiple testing correction) and 5, 170 and 562 respectively for MNCs (p < 0.05). No differentially expressed genes were identified for T cells in any of the three disease groups. RNA-seq analysis of samples from the validation cohort was used to corroborate these findings. After combination, we were able to confirm differential expression of 0, 14 and 7 genes in ET, PV and PMF respectively for PMNs (p < 0.05) and 51 genes in only PMF for MNCs (p < 0.05). The validated differentially expressed genes for PMNs and MNCs were mutually exclusive except for one gene. The differentially expressed genes in PV and PMF for PMNs were involved in cellular processes and metabolic pathways whereas the differentially expressed genes for PMF in MNCs were involved in regulation of cytoskeleton, focal adhesion and cell signaling pathways.
Conclusion
This is the first study to use microarray and next generation sequencing techniques to compare cell type-specific expression of genes between different subtypes of MPN. The lack of differential expression in T cells validates the techniques used and indicates that they are not part of the neoplastic clone. Differential expression of genes for MNCs was seen only in PMF which may be related to their more severe phenotype. Interestingly, there were fewer differentially expressed genes in PMF compared to PV for PMNs. The lack of differential expression in ET may either reflect the relatively milder phenotype of the disease or that differential expression is limited to megakaryocytes-platelets which were not studied. The lists of mutually exclusive cell type-specific differentially expressed genes for PMNs and MNCs provide further insight into the pathogenesis of MPN and into the differences between its different forms. The identified genes also indicate further routes for investigation of pathogenesis and possible disease-specific targets for therapy.
Aitman:Illumina: Honoraria.
Author notes
Asterisk with author names denotes non-ASH members.