Multiple myeloma (MM) is characterized by an abnormal clonal expansion of plasma cells in the bone marrow, production of monoclonal immunoglobulins and finally organ damage (CRAB). The premalignant precursor of MM is Monoclonal gammopathy of undetermined significance (MGUS) and one percent of all MGUS patients progress to MM yearly. The bone marrow microenvironment is thought to play an important role in plasma cell growth, migration, and survival mainly via cytokine secretion and cell-cell interactions.
Endothelial cells (ECs) are a major component in the bone marrow microenvironment, they regulate trafficking and homing of hematopoietic progenitor and stem cells. In MM increased bone marrow angiogenesis and recruitment of endothelial progenitors to the bone marrow niche has been reported. However, the specific EC contribution to myelomagenesis is not yet known. This study therefore aimed to investigate transcriptome alterations in prospectively isolated bone marrow ECs from MGUS and MM patients to identify possible disease-stage related changes.
We isolated primary ECs from MGUS and MM patients undergoing diagnostic bone marrow aspirations and age-matched healthy donors by FACS. RNA from Lin- CD45- CD71- CD235a- CD271- CD31+ cells of MGUS (n=4) and MM (n=7) patients and healthy donors (n=6) was extracted. Sequencing was done using the Illumina® NextSeq 500/550 High Output Kit v2.5 (300 cycles). Gene expression analysis was performed in R. Differential gene expression analysis (DEseq2) identified 1,507 genes with p adjusted values below 1e-2 that were significantly differentially expressed between the three groups. Hierarchical clustering was done following Ward's method (ward.D2).
Unsupervised clustering on the data showed that one MGUS-EC sample clustered with the healthy controls, and that one healthy control sample clustered with the MGUS samples. We therefore decided to restrict the analysis to those samples that clearly clustered separately, to be able to better depict the MGUS-, MM- and healthy EC specific profiles.
Further clustering of differential expressed genes into 8 clusters revealed two especially interesting expression patterns. One cluster (#4) contained 102 genes that where higher expressed in the healthy controls with lower expression in MGUS and lowest expression in MM Samples. These genes thus reflect the downregulation during progression from a healthy bone marrow microenvironment to a reduced expression MGUS and further downregulation in MM. Another cluster (#6) showed the opposite pattern, with 105 genes being low or not expressed in healthy controls while the expression was higher in MGUS and highest in MM.
Gene sets where further analyzed in the Database for Annotation, Visualization and Integrated Discovery (DAVID) v6.8. Cluster 4 showed a high number of downregulated transmembrane genes. Six genes of the major histocompatibility complex conserved site where identified might indicate a possible immunomodulating effect in disease progression. Furthermore, within cluster 4 we identified a cluster of genes involved in cell adhesion and receptor binding. Cluster 6 most strikingly showed a group of 6 genes of the melanoma-associated antigen (MAGE) gene family that were upregulated with disease progression. MAGE genes which belong to the cancer-testis group of germline genes have previously been reported in MM, as being involved in tumorigenesis, and plasma cell MAGE expression has been associated with chemotherapy resistance. Furthermore, cluster 6 contained a high number of extracellular matrix genes, and genes for proteins having an extracellular region, respectively, hinting towards a differential microenvironment composition upon MM development.
Taken together RNA sequencing analysis of prospectively isolated bone marrow endothelial cells identified genes that were specifically upregulated/suppressed in MM-ECs compared to MGUS-ECs and healthy donor-ECs. These genes thus represent potential gene candidates involved in the disruption of normal microenvironment function, thus leading to disease development and progression. Accordingly, studies are underway to investigate selected transcriptional deregulation EC-MM microenvironmental functions in the context of the disease.
No relevant conflicts of interest to declare.
Author notes
Asterisk with author names denotes non-ASH members.