Abstract
Granulocyte colony-stimulating factor (G-CSF) expression is often induced during infection, resulting in high concentrations of G-CSF in inflammatory exudates and in the blood. This increased expression suggests that G-CSF may regulate both local and systemic neutrophil responses. Previous studies of G-CSF or G-CSF receptor deficient (G-CSFR−/−) mice challenged with different infectious agents have provided conflicting results concerning the importance of G-CSF in the regulation of stress granulopoiesis. In the present study, we use a physiologically-relevant infectious model in which Pseudomonas aeruginosa coupled to agarose beads is injected intratracheally into wild type or G-CSFR−/− mice inbred onto a C57BL/6 background. This model produces a smoldering P. aeruginosa infection in the lungs, simulating the infection observed in many patients with cystic fibrosis. Importantly, the concentration of G-CSF in the blood and bronchoalveolar lavage fluid (BALF) is significantly elevated in this model. We show that G-CSFR−/− mice display decreased survival in response to P. aeruginosa infection. Extensive pulmonary necrosis was present in G-CSFR−/− mice, and quantitative bacteriology showed decreased clearance of P. aerguinosa from the lungs. Despite this evidence for severe infection, histological studies showed that neutrophil infiltration into the lungs of G-CSFR−/− mice was markedly decreased. To characterize this defect further, we examined the systemic neutrophil response. In wild type mice, neutrophil number in the blood increased from 0.8 ± 0.1 x 10−6/ml at baseline to 2.5 ± 0.3 x 10−6/ml at 48 hours post-infection (all data represent the mean ± SEM). In contrast, G-CSFR−/− mice were neutropenic at baseline (0.1 ± 0.02 x 10−6/ml) and little increase in blood neutrophils was noted at 48 hours post-infection (0.5 ± 0.1 x 10−6/ml). In both groups of mice, a modest decrease in bone marrow neutrophils was observed during infection. These data suggest that the systemic neutrophil response in this model is dependent upon G-CSF signals and is primarily mediated by increased neutrophil release from the bone marrow rather than increased neutrophil production. We next examined the local neutrophil response. Despite normal (mip-2) or increased (KC) expression of the major chemokines regulating neutrophil migration in mice, the number of neutrophils present in the BALF of G-CSFR−/− mice following infection was markedly reduced compared to wild type [number of neutrophils per ml of BALF at 48 hours post-infection ± SEM: 3.5 ± 0.7 x 106 (wild type); 0.7 ± 0.4 x 106 (G-CSFR−/−); p<.05]. Since neutrophil number in a tissue is dependent upon both their emigration and subsequent clearance, we measured the percentage of apoptotic neutrophils in the BALF. Interestingly, the percentage of apoptotic (Annexin V-positive) neutrophils was significantly increased in G-CSFR−/− mice, suggesting that G-CSF signals may play an important role in regulating neutrophil survival at the inflammatory site. Collectively these data provide new evidence that G-CSF signals play important but specific roles in the regulation of the systemic and local neutrophil response following infection.
Author notes
Corresponding author
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal