Abstract
The Promyelocytic Leukemia Zinc Finger (PLZF) gene was identified in a rare case of acute promyelocytic leukemia (APL) with translocation t(11;17)(q23;q21) and resistance to therapy with all-trans-retinoic acid. Recent studies have indicated a critical role of PLZF in maintenance of spermatogonial stem cells. Prominent expression of PLZF in hematopoietic stem cells, suggest that it may also play a similar role in this compartment. The wild type PLZF protein is a DNA sequence-specific transcription repressor containing nine Krüppel-like C2-H2 zinc fingers and an N-terminal BTB/POZ repression domain. Transcriptional repression by PLZF is mediated through recruitment of the nuclear receptor co-repressor (N-CoR/SMRT)/histone deacetylase (HDAC) complexes to its target genes, such as c-MYC and HOX genes. We now show that transcriptional repression by PLZF is surprisingly also dependent on the histone acetyl transferase (HAT) activity of the p300 protein. PLZF associates with p300 in vivo and its ability to repress transcription is specifically dependent on acetylation of PLZF on lysines in its C-terminal C2-H2 zinc-finger motifs. Acetylation of PLZF enhances its ability to bind its cognate DNA binding site in vitro as determined by EMSA and in vivo as measured by chromatin immunoprecipitation. An acetylation site mutant of PLZF fails to repress transcription despite retaining its abilities to interact with co-repressor/HDAC complexes, due to inefficient DNA binding. Inhibitors of p300 abolish transcriptional repression by PLZF and mutants of PLZF that mimic acetylation were insensitive to these inhibitory effects. Acetylation of PLZF by p300 was specific since over-expression of another HAT, p/CAF or the selective inhibition of p/CAF had no effect on PLZF activity despite the ability of the proteins to associate with each other. Taken together, our results indicate that a histone deacetylase dependent transcriptional repressor can be positively regulated through acetylation and point to an unexpected role of a co-activator protein in transcriptional repression.
Author notes
Corresponding author
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal