Abstract
Anaplastic lymphoma kinase (ALK)-positive anaplastic large cell lymphoma (ALCL) frequently carries the t(2;5)(p23;q35) resulting in aberrant expression of nucleophosmin (NPM)-ALK. Previously, NPM-ALK has been shown to activate phosphatidylinositol 3-kinase (PI3K) and its downstream effector, the serine/threonine kinase AKT. Recently, we have shown that mTOR signaling proteins are activated in ALK-positive ALCL tumors and that mTOR activation depends, at least in part, on activation of AKT (
Lab Invest 2005; 85: 255A
). In this study, we investigate the biological effects of inhibition of mTOR on two ALK-positive ALCL cell lines, Karpas 299 and SU-DHL1. For this purpose, we used rapamycin to inhibit mTOR-raptor complex and mTOR-specific small interfering RNA (siRNA) to silence the endogenous mtor gene. Treatment with rapamycin, resulted in a marked concentration-dependent decrease of phosphorylated (p)-mTOR, and its downstream targets, p-p70S6K, p-S6K, p-4E-BP1 and total eIF4E. Similarly, silencing the expression of mtor resulted in a decrease in the activation/phosphorylation level of these proteins as well as in the level of p-AKT. Both treatments induced apoptosis and cell cycle arrest in both ALK-positive ALCL cell lines as demonstrated by trypan blue exclusion, annexin V staining, BrdU incorporation, and cell cycle studies. There was a concentration-dependent decrease in the anti-apoptotic proteins BCL-2, BCL-XL, MCL-1 and c-FLIP (L and S) with increasing concentrations of rapamycin or after mTOR siRNA treatment. The cyclin dependent kinase inhibitors p21waf1 and p27kip1 and underphosphorylated (Un-p)-RB protein were upregulated, after treatment with rapamycin or after mTOR siRNA treatment. In conclusion, we provide evidence that inhibition of mTOR induces cell cycle arrest and apoptosis in ALK-positive ALCL cells. The decrease of p-AKT by silencing mtor suggests that mTOR is necessary to activate AKT in ALK-positive ALCL, and thus, mTOR can function as a feedback signal activity of its own pathway.These findings support the concept that mTOR contributes to NPM-ALK/PI3K/AKT mediated tumorigenesis and that inhibition of mTOR is a potential therapeutic strategy for treatment of ALK-positive ALCL.
Author notes
Corresponding author
2005, The American Society of Hematology
2005
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal